ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ: ਸੋਧਾਂ ਵਿਚ ਫ਼ਰਕ

testwiki ਤੋਂ
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ
imported>InternetArchiveBot
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5
 
(ਕੋਈ ਫ਼ਰਕ ਨਹੀਂ)

10:39, 18 ਜੁਲਾਈ 2023 ਮੁਤਾਬਕ ਸਭ ਤੋਂ ਨਵਾਂ ਦੁਹਰਾਅ

ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ (GTG), ਜੀਓਮੈਟਰੀ (ਰੇਖਾਗਣਿਤ) ਅਲਜਬਰੇ ਦੀ ਗਣਿਤਿਕ ਭਾਸ਼ਾ ਵਿੱਚ ਢਾਲੀ ਹੋਈ ਇੱਕ ਗਰੈਵੀਟੇਸ਼ਨ ਦੀ ਥਿਊਰੀ ਹੈ। ਜਿਹੜੇ ਪਾਠਕ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਜਾਣੂ ਹਨ, ਉਹਨਾਂ ਲਈ, ਇਹ ਟੈਟ੍ਰਾਡ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੀ ਯਾਦ ਤਾਜ਼ਾ ਕਰਵਾਉ਼ਦੀ ਹੈ ਭਾਵੇਂ ਮਹੱਤਵਪੂਰਨ ਧਾਰਨਾਤਮਿਕ ਫਰਕ ਵੀ ਹਨ। ਸਭ ਤੋਂ ਜਿਆਦਾ ਧਿਆਨ ਦੇਣ ਯੋਗ ਗੱਲ ਇਹ ਹੈ ਕਿ ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਅੰਦਰ ਬੈਕਗ੍ਰਾਊਂਡ ਫਲੈਟ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸਟਾਈਮ ਹੁੰਦਾ ਹੈ। ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਨੂੰ ਨਹੀਂ ਮੰਨਿਆ ਗਿਆ, ਪਰ ਇਸਦੇ ਸਥਾਨ ਤੇ ਇਹ ਇਹ ਤੱਥ ਨੂੰ ਅਪਣਾਉਂਦੀ ਹੈ ਕਿ ਗੇਜ ਕੋਵੇਰੀਅੰਟ ਡੈਰੀਵੇਟਿਵ ਘੱਟ ਤੋਂ ਘੱਟ ਤੌਰ ਤੇ ਮੇਲੇ ਗਏ ਹਨ। ਜਿਵੇਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਵਰਗੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਬਣਤ੍ਰਾਤਮਿਕ (ਰਚਨਾਤਮਿਕ) ਤੌਰ ਤੇ ਕਿਸੇ ਵੇਰੀਏਸ਼ਨਲ ਪ੍ਰਿੰਸੀਪਲ ਤੋਂ ਵਿਓਂਤਬੰਦ ਹੁੰਦੀਆਂ ਹਨ। ਇੱਕ ਸਪਿੱਨ ਟੈਂਸਰ ਵੀ ਆਈਨਸਟਾਈਨ-ਕਾਰਟਨ-ਸਕਿਆਮਾ-ਕਿੱਬਲ ਥਿਊਰੀ ਨਾਲ ਮਿਲਦੇ ਜੁਲਦੇ ਅੰਦਾਜ਼ ਵਿੱਚ ਸਮਰਥਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।

ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਪਹਿਲੀ ਵਾਰ ਲੇਜ਼ਨਬਾਇ, ਡੋਰਨ, ਅਤੇ ਗੁੱਲ ਦੁਆਰਾ 1988[1] ਵਿੱਚ 1993 ਦੇ ਪੇਸ਼ ਕੀਤੇ ਅੰਸ਼ਿਕ ਨਤੀਜਿਆਂ ਦੀ ਪੂਰਤੀ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤੀ ਗਈ ਸੀ।[2] ਇਹ ਥਿਊਰੀ ਬਾਕੀ ਬਚੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਕਮਿਉਨਿਟੀ ਦੁਆਰਾ ਵਿਸ਼ਾਲ ਪੱਧਰ ਤੇ ਅਪਣਾਈ ਨਹੀਂ ਗਈ ਹੈ, ਜਿਹਨਾਂ ਨੇ ਸਬੰਧਤ ਗੇਜ ਗਰੈਵੀਟੇਸ਼ਨ ਥਿਊਰੀ ਵਰਗੇ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਰੇਖਾਗਣਿਤ ਵਾਸਤੇ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਚੁਣੇ ਹਨ।

ਗਣਿਤਿਕ ਬੁਨਿਆਦ

ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਦੀ ਬੁਨਿਆਦ ਦੋ ਸਿਧਾਂਤਾਂ ਤੋਂ ਆਉਂਦੀ ਹੈ। ਪਹਿਲਾ, ਪੁਜੀਸ਼ਨ-ਗੇਜ ਇਨਵੇਰੀਅੰਸ ਮੰਗ ਕਰਦਾ ਹੈ ਕਿ ਫੀਲਡਾਂ ਦੇ ਮਨਚਾਹੇ ਲੋਕਲ ਵਿਸਥਾਪਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਭੌਤਿਕੀ ਸਮੱਗਰੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰਦੇ। ਦੂਜਾ, ਰੋਟੇਸ਼ਨ-ਗੇਜ ਇਨਵੇਰੀਅੰਸ ਮੰਗ ਕਰਦਾ ਹੈ ਕਿ ਫੀਲਡਾਂ ਦੀਆਂ ਮਨਚਾਹੀਆਂ ਸਥਾਨਿਕ ਰੋਟੇਸ਼ਨਾਂ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਭੌਤਿਕੀ ਸਮੱਗਰੀ ਨੂੰ ਪ੍ਰਭਾਵਿਤ ਨਹੀਂ ਕਰਦੀਆਂ। ਇਹ ਸਿਧਾਂਤ ਰੇਖਿਕ ਫੰਕਸ਼ਨਾਂ, ਪੁਜੀਸ਼ਨ-ਗੇਜ ਫੀਲਡ ਅਤੇ ਰੋਟੇਸ਼ਨ-ਗੇਜ ਫੀਲਡ, ਦੇ ਇੱਕ ਨਵੇਂ ਜੋੜੇ ਨਾਲ ਜਾਣ-ਪਛਾਣ ਵੱਲ ਲਿਜਾਂਦੇ ਹਨ। ਕਿਸੇ ਮਨਚਾਹੇ ਫੰਕਸ਼ਨ f ਰਾਹੀਂ ਵਿਸਥਾਪਨ

xx=f(x)

ਇਸਦੇ ਅਡਜੋਆਇੰਟ ਉੱਤੇ ਮੈਪਿੰਗ ਰਾਹੀ਼ ਪਰਿਭਾਸ਼ਿਤ ਪੁਜੀਸ਼ਨ-ਗੇਜ ਫੀਲਡ ਨੂੰ ਜਨਮ ਦਿੰਦਾ ਹੈ,

𝗁¯(a,x)𝗁¯(a,x)=𝗁¯(f1(a),f(x)),

ਜੋ ਆਪਣੀ ਪਹਿਲੀ ਆਰਗੂਮੈਂਟ ਵਿੱਚ ਰੇਖਿਕ ਹੈ ਅਤੇ a ਇੱਕ ਸਥਿਰਾਂਕ ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ। ਇਸੇਤਰਾਂ, ਕੋਈ ਮਨਚਾਹੇ ਰੋਟਰ R ਦੁਆਰਾ ਇੱਕ ਰੋਟੇਸ਼ਨ, ਰੋਟੇਸ਼ਨ-ਗੇਜ ਫੀਲਡ ਨੂੰ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦਿੰਦੀ ਹੈ;

Ω¯(a,x)Ω¯(a,x)=RΩ¯(a,x)R2aRR.

ਅਸੀਂ ਦੋ ਵੱਖਰੇ ਕੋਵੇਰੀਅੰਟ ਡੈਰੀਵੇਟਿਵ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ;

aD=a𝗁¯()+12Ω(𝗁(a))
a𝒟=a𝗁¯()+Ω(𝗁(a))

ਜਾਂਕਿਸੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਦੀ ਸਪੈਸੀਫਿਕੇਸ਼ਨ ਨਾਲ

Dμ=μ+12Ωμ
𝒟μ=μ+Ωμ×,

ਜਿੱਥੇ × ਕਮਿਊਟੇਟਰ ਗੁਣਨਫਲ ਦਰਸਾਉਂਦਾ ਹੈ।

ਇਹਨਾਂ ਡੈਰੀਵੇਟਿਵਾਂ ਵਿੱਚੋਂ ਪਹਿਲਾ ਡੈਰੀਵੇਟਿਵ ਸਪਿੱਨੌਰਾਂ ਨਾਲ ਸਿੱਧੇ ਤੌਰ ਤੇ ਵਰਤਣ ਲਈ ਜਿਆਦਾ ਢੁਕਵਾਂ ਰਹਿੰਦਾ ਹੈ ਜਿੱਥੇ ਕਿ ਦੂਜਾ ਡੈਰੀਵੇਟਿਵ ਔਬਜ਼ਰਵੇਬਲਾਂ ਵਾਸਤੇ ਢੁਕਵਾਂ ਹੈ। ਰੀਮਾਨੀਅਨ ਟੈਂਸਰ ਦਾ ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਤੁੱਲ, ਇਹਨਾਂ ਡੈਰੀਵੇਟਿਵਾਂ ਦੇ ਕਮਿਉਟੇਸ਼ਨ ਨਿਯਮਾਂ ਤੋਂ ਬਣਾਇਆ ਜਾਂਦਾ ਹੈ।

[Dμ,Dν]ψ=12𝖱μνψ
(ab)=𝖱(𝗁(ab))

ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ

ਆਈਨਸਟਾਈਨ-ਹਿਲਬ੍ਰਟ ਐਕਸ਼ਨ ਨੂੰ ਸਵੈ-ਸਿਧ ਕਰਨ ਨਾਲ ਵਿਓਂਤਬੰਦ ਕੀਤੀਆਂ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਗੇਜ ਫੀਲਡਾਂ ਦੀ ਉਤਪਤੀ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਕਰਦੀਆਂ ਹਨ, ਯਾਨਿ ਕਿ,

S=[12κ(2Λ)+M](det𝗁)1d4x.

ਦੋਵੇਂ ਗੇਜ ਫੀਲਡਾਂ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਐਕਸ਼ਨ ਦੀ ਵੇਰੀਏਸ਼ਨ ਨੂੰ ਘੱਟ ਤੋਂ ਘੱਟ ਕਰਨ ਨਾਲ ਇਹ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਦੀਆਂ ਹਨ;

𝒢(a)Λa=κ𝒯(a)
𝒟𝗁¯(a)=κ𝒮𝗁¯(a),

ਜਿੱਥੇ 𝒯 ਕੋਵੇਰੀਅੰਟ ਊਰਜਾ-ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਹੈ ਅਤੇ 𝒮 ਕੋਵੇਰੀਅੰਟ ਸਪਿੱਨ ਟੈਂਸਰ ਹੁੰਦਾ ਹੈ। ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ, ਇਹ ਇਕੁਏਸ਼ਨਾਂ ਸਪੇਸਟਾਈਮ ਦੇ ਕਿਸੇ ਉਤਪੰਨ ਹੋ ਰਹੇ ਕਰਵੇਚਰ ਨਹੀਂ ਦਿੰਦੀਆਂ ਸਗੋਂ ਸਿਰਫ ਫਲੈਟ ਸਪੇਸਟਾਈਮ ਅੰਦਰਲੀਆਂ ਗੇਜ ਫੀਲਡਾਂ ਦੀ ਉਤਪਤੀ ਹੀ ਦਿੰਦੀਆਂ ਹਨ। ਹੋਰ ਤਾਂ ਹੋਰ, ਸਪਿੱਨ ਟੈਂਸਰ ਦੀ ਹੋਂਦ ਸਪੇਸਟਾਈਮ ਨੂੰ ਟੌਰਿਜ਼ਨ ਨਹੀਂ ਪ੍ਰਦਾਨ ਕਰਦੀਆਂ।

ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਸਬੰਧ

ਜੋ ਪਾਠਕ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਜਾਣੂ ਹਨ, ਉਹਨਾਂ ਵਾਸਤੇ ਟੈਟ੍ਰਾਡਾਂ ਨਾਲ ਮਿਲਦੇ ਜੁਲਦੇ ਅੰਦਾਜ਼ ਵਿੱਚ ਪੁਜੀਸ਼ਨ-ਗੇਜ ਫੀਲਡ ਤੋਂ ਇੱਕ ਮੈਟ੍ਰਿਕ ਟੈਂਸਰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਸੰਭਵ ਹੈ। ਟੈਟ੍ਰਾਡ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਅੰਦਰ, ਚਾਰ ਵੈਕਟਰਾਂ {e(a)μ} ਦਾ ਇੱਕ ਸੈੱਟ ਪੇਸ਼ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਗ੍ਰੀਕ ਅੱਖਰ μ ਸਪੇਸਟਾਈਮ ਦੇ ਮੈਟ੍ਰਿਕ ਟੈਂਸਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਅਤੇ ਸੁੰਗੇੜ ਕੇ ਵਧਾ ਜਾਂ ਘਟਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਬ੍ਰੈਕਟਾਂ ਅੰਦਰਲਾ ਲੈਟਿਨ ਸੂਚਕਾਂਕ (a) ਹਰੇਕ ਚਾਰ ਟੈਟ੍ਰਾਡਾਂ ਵਾਸਤੇ ਇੱਕ ਲੇਬਲ ਹੈ, ਜੋ ਇਸ ਤਰ੍ਹਾਂ ਵਧਾਇਆ ਜਾਂ ਘਟਾਇਆ ਜਾਂਦਾ ਹੈ ਜਿਵੇਂ ਇਹ ਕਿਸੇ ਵੱਖਰੇ ਮਿੰਕੋਵਸਕੀ ਮੈਟ੍ਰਿਕ ਟੈਂਸਰ ਨਾਲ ਗੁਣਾ ਕਰ ਕੇ ਸੁੰਗੇੜਿਆ ਗਿਆ ਹੋਵੇ। ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ, ਮੋਟੇ ਤੌਰ ਤੇ, ਇਹਨਾਂ ਸੂਚਕਾਂਕਾਂ ਦੀਆਂ ਭੂਮਿਕਾਵਾਂ ਨੂੰ ਪਲਟ ਦਿੰਦੀ ਹੈ। ਮੈਟ੍ਰਿਕ ਨੂੰ ਅੱਖਾਂ ਮਿਚ ਕੇ ਸਪੇਸਟਾਈਮ ਅਲਜਬਰੇ ਦੀ ਚੋਣ ਵਿੱਚ ਮਿੰਕੋਵਸਕੀ ਹੋਣਾ ਮੰਨ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਸੂਚਕਾਂਕਾਂ ਦੇ ਹੋਰ ਸੈੱਟ ਵਿੱਚ ਰੱਖੀ ਜਾਣਕਾਰੀ ਗੇਜ ਫੀਲਡਾਂ ਦੇ ਵਰਤਾਓ ਰਾਹੀਂ ਸ਼ਾਮਿਲ ਕਰ ਲਿਆ ਜਾਂਦਾ ਹੈ।

ਕਿਸੇ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਅੰਦਰ, ਕਿਸੇ ਕੋਵੇਰੀਅੰਟ ਵੈਕਟਰ ਅਤੇ ਕੌਂਟਰਾਵੇਰੀਅੰਟ ਵੈਕਟਰ ਲਈ, ਅਸੀਂ ਇਹ ਐਸੋਸੀਏਸ਼ਨਾਂ ਬਣਾ ਸਕਦੇ ਹਾਂ;

gμ=𝗁1(eμ)
gμ=𝗁¯(eμ)

ਜਿੱਥੇ ਹੁਣ ਯੂਨਿਟ ਵੈਕਟਰ {eμ} ਸੁਣੇ ਹੋਏ ਨਿਰਦੇਸ਼ਾਂਕ ਅਧਾਰ ਹੁੰਦੇ ਹਨ। ਇਹ ਇਸ ਨਿਯਮ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਮੈਟ੍ਰਿਕ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਨ;

gμν=gμgν.

ਇਹ ਵਿਧੀ ਅਪਣਾ ਕੇ, ਇਹ ਦਿਖਾਉਣਾ ਸੰਭਵ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਦੇ ਔਬਜ਼ਰਵੇਬਲ ਅਨੁਮਾਨਾਂ ਦਾ ਜਿਆਦਾਤਰ ਹਿੱਸਾ, ਗੈਰ-ਅਲੋਪ ਹੋ ਰਹੇ ਸਪਿੱਨ ਵਾਸਤੇ ਆਈਨਸਟਾਈਨ-ਕਾਰਟਨ-ਸਕਿਆਮਾ-ਕਿੱਬਲ ਥਿਊਰੀ ਨਾਲ ਸਹਿਮਤ ਰਹਿੰਦਾ ਹੈ, ਅਤੇ ਸਪਿੱਨ ਨੂੰ ਖਤਮ ਕਰਨ ਲਈ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਪ੍ਰਤਿ ਘਟ ਜਾਂਦਾ ਹੈ। ਫੇਰ ਵੀ, ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ, ਗਲੋਬਲ ਹੱਲਾਂ ਬਾਰੇ ਵੱਖਰੇ ਅਨੁਮਾਨ ਦਿੰਦੀ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਬੁੰਦੂ ਪੁੰਜ ਦਾ ਅਧਿਐਨ, ਕਿਸੇ ਨਿਊਟੋਨੀਅਨ ਗੇਜ ਦੀ ਚੋਣ, ਗੁਲਸਟ੍ਰੈਂਡ-ਪੇਨਲੀਵ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਵਿੱਚ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਮੈਟ੍ਰਿਕ ਨਾਲ ਮਿਲਦਾ ਜੁਲਦਾ ਇੱਕ ਹੱਲ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਇੱਕ ਸ਼ਾਖਾ ਦੀ ਆਗਿਆ ਦਿੰਦੀ ਹੈ ਜਿਸਨੂੰ ਕ੍ਰੁਸਕਲ-ਸਜ਼ੀਕ੍ਰਸ ਨਿਰਦੇਸ਼ਾਂਕ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਗੇਜ ਥਿਊਰੀ ਗਰੈਵਿਟੀ, ਦੂਜੇ ਪਾਸੇ, ਅਜਿਹੀ ਕਿਸੇ ਸ਼ਾਖਾ ਤੋਂ ਮਨਾ ਕਰਦੀ ਹੈ।ਫਰਮਾ:Why

ਹਵਾਲੇ

ਬਾਹਰੀ ਲਿੰਕ

ਫਰਮਾ:Theories of gravitation