ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ

testwiki ਤੋਂ
imported>InternetArchiveBot (Bluelink 4 books for verifiability (20231229)) #IABot (v2.0.9.5) (GreenC bot) ਵੱਲੋਂ ਕੀਤਾ ਗਿਆ 22:43, 29 ਦਸੰਬਰ 2023 ਦਾ ਦੁਹਰਾਅ
(ਫ਼ਰਕ) ←ਪੁਰਾਣਾ ਦੁਹਰਾਅ | ਸਭ ਤੋਂ ਨਵਾਂ ਦੁਹਰਾਅ (ਫ਼ਰਕ) | ਨਵਾਂ ਦੁਹਰਾਅ → (ਫ਼ਰਕ)
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ

ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਇੱਕ ਪਰਿਕਲਪਨਾ ਹੈ ਜੋ ਇਹ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ, ਜਿਸਨੂੰ ਆਮਤੌਰ ਤੇ c ਰਾਹੀਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ, ਸਪੇਸ ਅਤੇ ਵਕਤ ਦਾ ਇੱਕ ਫੰਕਸ਼ਨ ਹੋ ਸਕਦੀ ਹੈ। ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਕਲਾਸੀਕਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਸਵੀਕ੍ਰਿਤ ਥਿਊਰੀਆਂ ਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਸਮਾਨ ਕੁੱਝ ਪ੍ਰਸਥਿਤੀਆਂ ਵਿੱਚ ਪਾਈ ਜਾਂਦੀ ਹੈ, ਪਰ ਇਹ ਗਰੈਵੀਟੇਸ਼ਨ ਅਯੇ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਦੀਆਂ ਬਹੁਤ ਸਾਰੀਆਂ ਬਦਲਵੀਆਂ ਥਿਊਰੀਆਂ ਵਿੱਚ ਵੀ ਪਾਈ ਜਾਂਦੀ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਜਿਆਦਾਤਰ ਮੁੱਖ ਧਾਰਾ ਦੀਆਂ ਨਹੀਂ ਹਨ। ਕਲਾਸੀਕਲ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਰਿੱਫਰੈਕਟਿਵ ਇੰਡੈਕਸ (ਪਰਿਵਰਤਿਕ ਸੂਚਕਾਂਕ) ਦਰਸਾਉਂਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਪ੍ਰਕਾਸ਼ ਕਿਸੇ ਮਾਧਿਅਮ ਰਾਹੀਂ ਗੁਜ਼ਰਨ ਤੇ ਧੀਮਾ ਹੋ ਜਾਂਦਾ ਹੈ। ਇਸਦੀ ਵਜਾਏ ਪੁਲਾੜ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨੂੰ ਇੱਕ ਸਥਿਰਾਂਕ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਸਨੂੰ ਮਿਆਰੀ ਇਕਾਈ (SI) ਵਿੱਚ 299792458 ਮੀਟਰ/ਸਕਿੰਟ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸਲਈ ਆਮਤੌਰ ਤੇ ਬਦਲਵੀਆਂ ਥਿਊਰੀਆਂ ਮੀਟਰ ਅਤੇ ਸਕਿੰਟਾਂ ਦੀਆਂ ਪਰਿਭਾਸ਼ਾਵਾਂ ਨੂੰ ਸੋਧਦੀਆਂ ਹਨ। ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਨੂੰ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਤੇਜ਼ ਥਿਊਰੀਆਂ ਨਹੀਂ ਸਮਝਣਾ ਚਾਹੀਦਾ। 1911[1] ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ, 1957 ਵਿੱਚ ਰੌਬਰਟ ਡਿਕੀ ਦੁਆਰਾ, ਅਤੇ 1980ਵੇਂ ਦਹਾਕੇ ਦੇ ਅੰਤ ਤੋਂ ਸ਼ੁਰੂ ਹੋਣ ਸਮੇਂ ਤੋਂ ਕਈ ਖੋਜੀਆਂ ਦੁਆਰਾ, ਮਹੱਤਵਪੂਰਨ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਬਾਰੇ ਯਤਨ ਕੀਤੇ ਗਏ ਸਨ। ਕਿਉਂਕਿ ਉਹਨਾਂ ਵਿੱਚੋਂ ਕੁੱਝ ਸਥਾਪਿਤ ਸੰਕਲਪਾਂ ਦੇ ਵਿਰੁੱਧ ਸਨ, ਇਸਲਈ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਥਿਊਰੀਆਂ ਬਹਿਸ ਦਾ ਵਿਸ਼ਾ ਰਹੀਆਂ ਹਨ।

1911 ਵਿੱਚ ਇਕੁਏਸ਼ਨ ਦਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਯਤਨ

ਜਦੋਂਕਿ ਆਈਨਸਟਾਈਨ ਨੇ ਸਭ ਤੋਂ ਪਹਿਲਾਂ 1907 [2] ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਇੱਕ ਬਦਲਣਯੋਗ ਸਪੀਡ ਦਾ ਨਾਮ ਲਿਆ ਸੀ, ਤਾਂ ਫੇਰ ਉਸਨੇ 1911 ਵਿੱਚ ਇਸ ਵਿਚਾਰ ਉੱਤੇ ਹੋਰ ਚੰਗੀ ਤਰਾਂ ਪੁਨਰ-ਵਿਚਾਰ ਕੀਤਾ। ਕਿਸੇ ਮਾਧਿਅਮ ਵਿੱਚ ਪ੍ਰਸਥਿਤੀ ਦੇ ਸਮਾਨ ਪ੍ਰਸਥਿਤੀ ਅੰਦਰ, ਜਿੱਥੇ c=νλ ਸਮੀਕਰਨ ਅਨੁਸਾਰ ਇੱਕ ਛੋਟੀ ਤਰੰਗ-ਲੰਬਾਈ λ, ਪ੍ਰਕਾਸ਼ ਦੀ ਧੀਮੀ ਸਪੀਡ ਨੂੰ ਜਨਮ ਦਿੰਦੀ ਹੈ, ਆਈਨਸਟਾਈਨ ਨੇ ਮੰਨਿਆ ਕਿ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਘੜੀਆਂ ਧੀਮੀਆਂ ਦੌੜਦੀਆਂ ਹਨ, ਜਿੱਥੇ ਕਿ ਸਬੰਧਤ ਫਰੀਕੁਐਂਸੀਆਂ ν ਇਸ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਤੋਂ ਪ੍ਰਭਾਵਿਤ ਹੋ ਜਾਂਦੀਆਂ ਹਨ:

ν1=ν2(1+GMrc2).

ਆਈਨਸਟਾਈਨ ਨੇ (ਪੰਨਾ 906-907) ਉੱਤੇ ਟਿੱਪਣੀ ਕੀਤੀ:

"Aus dem soeben bewiesenen Satze, daß die Lichtgeschwindigkeit im Schwerefelde eine Funktion des Ortes ist, läßt sich leicht mittels des Huygensschen Prinzipes schließen, daß quer zum Schwerefeld sich fortpflanzende Lichtstrahlen eine Krümmung erfahren müssen."

("ਹੁਣੇ ਹੁਣੇ ਸਾਬਤ ਕੀਤੀ ਗਈ ਧਾਰਨਾ ਤੋਂ, ਕਿ ਕਿਸੇ ਗਰੈਵਿਟੀ ਫੀਲਡ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਪੁਜੀਸ਼ਨ ਦਾ ਇੱਕ ਫੰਕਸ਼ਨ ਹੁੰਦੀ ਹੈ, ਇਹ ਹੂਈਜਨ ਦੇ ਸਿਧਾਂਤ ਤੋਂ ਅਸਾਨੀ ਨਾਲ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਤੋਂ ਸਮਕੋਣ ਉੱਤੇ ਗੁਜ਼ਰ ਰਹੀਆਂ ਪ੍ਰਕਾਸ਼ ਦੀਆਂ ਕਿਰਣਾਂ ਨੂੰ ਜਰੂਰ ਹੀ ਕਰਵੇਚਰ ਅਨੁਭਵ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ।)

1912 [3]ਵਿੱਚ ਇੱਕ ਅਗਲੇ ਪਰਚੇ ਅੰਦਰ, ਉਸਨੇ ਨਤੀਜਾ ਕੱਢਿਆ ਕਿ:

“Das Prinzip der Konstanz der Lichtgeschwindigkeit kann nur insofern aufrechterhalten werden, als man sich auf für Raum-Zeitliche-Gebiete mit konstantem Gravitationspotential beschränkt.“

(“ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਸਥਿਰਤਾ ਦਾ ਸਿਧਾਂਤ ਸਿਰਫ ਉਦੋਂ ਹੀ ਪੁਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜਦੋਂ ਸਥਿਰ ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ ਦੇ ਸਪੇਸਟਾਈਮ ਖੇਤਰਾਂ ਤੱਕ ਅਪਣੇ ਆਪ ਨੂੰ ਕੋਈ ਸਮੀਤ ਕਰ ਲੈਂਦਾ ਹੈ।)

ਫੇਰ ਵੀ, ਆਈਨਸਟਾਈਨ ਨੇ ਸੂਰਜ ਉੱਤੇ “ਲੱਗਪਗ ਇੱਕ ਆਰਕ-ਸਕਿੰਟ” ਦੀ ਇੱਕ ਪ੍ਰਕਾਸ਼ ਡਿੱਫਲੈਕਸ਼ਨ (ਝੁਕਾਓ) ਪੈਦਾ ਕੀਤੀ ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਉਸਦੀ ਥਿਊਰੀ ਤੋਂ ਬਾਦ ਵਿੱਚ ਪ੍ਰਾਪਤ ਕੀਤੀ ਗਈ ਸਹੀ ਕੀਮਤ ਦਾ ਸਿਰਫ ਅੱਧਾ ਮੁੱਲ ਹੀ ਸੀ। ਜਦੋਂਕਿ 1919 ਵਿੱਚ ਐਡਿੰਗਟਨ ਦੁਆਰਾ ਬਾਦ ਵਿੱਚ ਸਹੀ ਮੁੱਲ ਨਾਪਿਆ ਗਿਆ ਸੀ, ਆਈਨਸਟਾਈਨ ਨੇ ਕਦੇ ਵੀ ਅਪਣੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਥਿਊਰੀ ਨੂੰ ਨਹੀਂ ਤਿਆਗਿਆ ਪਰ ਵੱਖਰੇ ਤਰੀਕੇ ਨਾਲ 1915 ਵਿੱਚ ਅਪਣੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ, 107 ਸਮੀਕਰਨਾਂ ਨਾਲ ਸ਼ੁਰੂ ਹੋਣ ਵਾਲੀ ਅਪਣੀ ਕਿਤਾਬ[4] ਦੇ 5 ਸੰਸਕਰਨਾਂ ਅਤੇ ਉਸਤੋਂ ਬਾਦ ਦੇ ਕਈ ਪੈਰਾਗ੍ਰਾਫਾਂ ਵਿੱਚ ਇਸਦਾ ਹਿਸਾਬ ਲਗਾਇਆ। 1911 ਵਿੱਚ ਮਹੱਤਵਪੂਰਨ ਤੌਰ ਤੇ, ਉਸਨੇ ਸਿਰਫ ਵਕਤ ਨੂੰ ਹੀ ਬਦਲਣਯੋਗ (ਵੇਰੀਏਬਲ) ਮੰਨਿਆ ਸੀ।, ਜਦੋਂਕਿ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਹਾਲਾਂਕਿ ਕਿਸੇ ਹੋਰ ਸਿਧਾਂਤਕ ਸੰਦਰਭ ਅਧੀਨ, ਸਪੇਸ ਅਤੇ ਵਕਤ ਦੋਵੇਂ ਨਾਪ ਹੀ ਨਜ਼ਦੀਕੀ ਪੁੰਜਾਂ ਦੁਆਰਾ ਪ੍ਰਭਾਵਿਤ ਹੋਏ ਹਨ। ਪੀਟਰ ਬਰਗਮਾੱਨ ਸਮੇਤ ਕਈ ਵਿਗਿਆਨਿਕ ਆਈਨਸਟਾਈਨ ਨਾਲ ਅਸਹਿਮਤ ਰਹੇ ਹਨ ਜਦੋਂਕਿ ਮੈਕਸ ਬੌਰਨ ਵਰਗੇ ਵਿਗਿਆਨਿਕ ਸਹਿਮਤ ਰਹੇ ਹਨ।

1905 ਤੋਂ 1915 ਤੱਕ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਦਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ

ਅਲਬਰਟ ਆਈਨਸਟਾਈਨ 1905 ਅਤੇ 1915 ਦਰਮਿਆਨ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਥਿਊਰੀ ਦੇ ਕਈ ਵਰਜ਼ਨਾਂ ਰਾਹੀਂ ਗੁਜ਼ਰਿਆ, ਅੰਤ ਨੂੰ ਉਸਨੇ ਨਤੀਜਾ ਕੱਢਿਆ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉਦੋਂ ਸਥਿਰ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਗਰੈਵਿਟੀ ਨੂੰ ਵਿੱਚ ਨਾ ਲਿਆ ਜਾਵੇ, [5] ਪਰ ਕਿਸੇ ਬਦਲਦੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਵਿਲੌਸਿਟੀ ਨੂੰ ਸਥਿਰਾਂਕ ਨਹੀਂ ਕਿਹਾ ਜਾ ਸਕਦਾ। ਉਸੇ ਪੁਸਤਕ ਅੰਦਰ ਆਈਨਸਟਾਈਨ ਨੇ ਸਮਝਾਇਆ ਕਿ ਉਸਦਾ ਭਾਵ ਸੀ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਇੱਕ ਵੈਕਟਰ ਹੁੰਦੀ ਹੈ ਜਦੋਂ ਇਸਨੂੰ ਕਿਸੇ ਇਸ਼ਾਰੀਆ ਢਾਂਚੇ (ਰੈੱਫਰੈਂਸ ਫਰੇਮ) ਅੰਦਰ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (ਕੋ-ਆਰਡੀਨੇਟਾਂ) ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।[6] ਇਹ ਫੈਸਲਾ ਪਾਠਕ ਤੇ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਆਈਨਸਟਾਈਨ ਦਾ ਭਾਵ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਬਦਲਣ ਤੋਂ ਸੀ, ਜਾਂ ਸਿਰਫ ਵੈਕਟਰ ਦੀ ਦਿਸ਼ਾ ਬਦਲਣ ਤੋਂ ਸੀ।

ਇਸਦਾ ਜਵਾਬ ਆਈਨਸਟਾਈਨ ਦੀ ਪੁਸਤਕ[7] ਦੇ ਗਣਿਤ ਵਿੱਚ ਮਿਲਦਾ ਹੈ। ]ਅਲਫਾ (α) ਦਾ ਇੱਕ ਹਿਸਾਬ ਕਿਤਾਬ ਸਮੀਕਰਨ 107 ਨੂੰ ਅਪਣਾਉਂਦਾ ਹੈ ਅਤੇ ਇੱਕੋ ਇੰਟੀਗ੍ਰੇਟਡ ਮਾਤਰਾ ਵਿੱਚ, ਇੱਕ ਅੰਸ਼ਿਕ ਡਿੱਫਰੈਂਸ਼ੀਅਲ ਫੰਕਸ਼ਨ (ਇੱਕ ਅਸਥਿਰਾਂਕ ਨੂੰ ਸਾਬਤ ਕਰਦੇ ਹੋਏ) ਦੇ ਤੌਰ ਤੇ ਅਤੇ ਇੱਕ ਭਿੰਨ ਵਿੱਚ ਡੀਨੋਮੀਨੇਟਰ (ਹਰ) ਦੇ ਤੌਰ ਤੇ (ਕਿਸੇ ਵੈਕਟਰ ਨੂੰ ਸਾਬਤ ਨਾ ਕਰਦੇ ਹੋਏ) ਦੋਵਾਂ ਦੇ ਤਰਕ ਦੇ ਤੌਰ ਤੇ ਬਦਲਣਯੋਗ ਸਕੇਲਰ ਪ੍ਰਕਾਸ਼ ਵਿਲੌਸਿਟੀ (L) ਦੀ ਇੱਕ ਸਪੱਸ਼ਟ ਵਰਤੋਂ ਕਰਦਾ ਹੈ। ਕਿਸੇ ਵੈਕਟਰ ਦੁਆਰਾ ਵੰਡ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ, ਇਸਲਈ ਕਿਸੇ ਬਦਲਣਯੋਗ ਸਕੇਲਰ ਸਪੀਡ ਦੇ ਤੌਰ ਤੇ ਇਸ ਦੀ ਵਰਤੋਂ ਤੋਂ ਇਲਾਵਾ ਪ੍ਰਕਾਸ਼ ਦੀ ਵਿਲੌਸਿਟੀ ਦੀ ਵਿਆਖਿਆ ਕਰਨ ਦਾ ਕੋਈ ਹੋਰ ਤਰੀਕਾ ਨਹੀਂ ਰਹਿ ਜਾਂਦਾ।

ਇਸ ਕੈਲਕੁਲੇਸ਼ਨ ਅੰਦਰ L = c/co ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ co ਪ੍ਰਕਾਸ਼ ਦੀ ਫਲੈਟ ਸਪੇਸ ਅੰਦਰ ਸਪੀਡ ਹੁੰਦੀ ਹੈ।

α=+∞-∞(1/L)(∂L/∂x1) dx3

ਪੀਟਰ ਬਰਗਮਾੱਨ ਆਈਨਸਟਾਈਨ ਨਾਲ ਸਹਿਮਤ ਨਹੀਂ ਹੋਇਆ, ਪਰ ਉਸਨੇ ਆਈਨਸਟਾਈਨ ਦਾ ਸਮਰੱਥਨ ਪ੍ਰਾਪਤ ਕਰਨ ਵਾਸਤੇ 1942 ਵਿੱਚ ਅਪਣੀ ਪਹਿਲੀ ਪੁਸਤਕ [8] ਤੋਂ ਝਗੜੇ ਨੂੰ ਬਾਹਰ ਰੱਖਿਆ। 1968 ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਦੇ ਦੁਨੀਆਂ ਤੋਂ ਚਲੇ ਜਾਣ ਤੋਂ ਬਾਦ ਬਰਗਮਾੱਨ ਨੇ ਇੱਕ ਨਵੀਂ ਪੁਸਤਕ [9] ਲਿਖੀ ਜਿਸ ਵਿੱਚ ਇਹ ਦਾਅਵਾ ਕੀਤਾ ਗਿਆ ਸੀ। ਕਿ ਵੈਕਟਰ ਪ੍ਰਕਾਸ਼ ਵਿਲੌਸਿਟੀ ਦਿਸ਼ਾ ਬਦਲ ਸਕਦੀ ਹੈ ਪਰ ਸਪੀਡ ਨਹੀਂ ਬਦਲ ਸਕਦੀ। ਵਿਗਿਆਨ ਅੰਦਰ ਇਹ ਪ੍ਰਸਿੱਧ ਸਲਾਹ ਬਣ ਗਈ ਹੈ, ਪਰ ਆਈਨਸਟਾਈਨ ਦੇ ਸਪੱਸ਼ਟ ਗਣਿਤ ਨਾਲ ਸਹਿਮਤੀ ਵਿੱਚ ਨਹੀਂ ਹੈ। ਬਰਗਮਾੱਨ ਇਹ ਜਾਣਦਾ ਸੀ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੱਸ਼ਟ ਸਪੀਡ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ ਬਦਲ ਜਾਂਦੀ ਹੋਵੇਗੀ ਅਤੇ ਇਵੈਂਟ ਹੌਰਿਜ਼ਨ ਉੱਤੇ ਜ਼ੀਰੋ ਤੱਕ ਜਾ ਸਕਦੀ ਹੋਵੇਗੀ ਜਿਵੇਂ ਕਿਸੇ ਦੂਰ ਸਥਿਤ ਔਬਜ਼ਰਵਰ ਦੁਆਰਾ ਦੇਖੀ ਜਾਂਦੀ ਹੋਵੇਗੀ। [10]

ਮੈਕਸ ਬੌਰਨ ਆਈਨਸਟਾਈਨ ਨਾਲ ਸਹਿਮਤ ਸੀ ਅਤੇ 1920 ਵਿੱਚ ਜਰਮਨ ਵਿੱਚ, ਅਤੇ 1923 ਵਿੱਚ ਅੰਗਰੇਜੀ ਵਿੱਚ ਛਪੇ ਪਰਚੇ ਵਿੱਚ ਉਸਨੇ ਕਿਹਾ ਕਿ ਪ੍ਰਕਾਸ਼ ਦੀ ਦਿਸ਼ਾ ਅਤੇ ਸਪੀਡ ਦੋਵੇਂ ਹੀ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ [11] ਅੰਦਰ ਬਦਲ ਜਾਂਦੀਆਂ ਹਨ। ਦੋਵਾਂ ਨੇ ਅਪਣੇ ਭਾਵ ਬਾਬਤ ਕੋਈ ਸ਼ੱਕ ਨਾ ਛੱਢੇ ਹੋਏ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਗਰੈਵਿਟੀ ਕੰਪੋਨੈਂਟਾਂ ( -g44/g11 ) ਵਰਗਮੂਲ (ਸਕੁਏਅਰ ਰੂਟ) ਦੇ ਤੌਰ ਤੇ ਨੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੇ ਮੁੱਲ ਨੂੰ ਸਮੀਕਰਨਬੱਧ ਕੀਤਾ।

ਰਿਚਰਡ ਟੋਲਮਨ ਵੀ ਆਈਨਸਟਾਈਨ ਨਾਲ ਸਹਿਮਤ ਹੋਇਆ ਅਤੇ ਉਸਨੇ ਕਿਸੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੀਲਡ ਅੰਦਰ dr/dt ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਰੇਡੀਅਲ ਸਪੀਡ ਨੂੰ ਸਮੀਕਰਨਬੱਧ ਕੀਤਾ: [12]

dr/dt = ( 1- 2m/r)

ਜਿੱਥੇ m ਦਾ ਅਰਥ MG/c2 ਹੈ ਅਤੇ ਕੁਦਰਤੀ ਇਕਾਈਆਂ (ਯੂਨਿਟਾਂ) ਅਜਿਹੀਆਂ ਚੁਣੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਕਿ co ਰਹੇ।

ਆਈਨਸਟਾਈਨ, ਬੌਰਨ, ਅਤੇ ਟੋਲਮਨ ਦੀ ਲਿਖਤ ਨੂੰ ਆਮਤੌਰ ਤੇ ਪੀਟਰ ਬਰਗਮਾੱਨ ਦੀ ਵਿਆਖਿਆ ਦੇ ਪੱਖ ਵਿੱਚ ਅੱਖੋਂ ਓਹਲੇ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ।

ਡਿਕੇ ਦਾ 1957 ਦਾ ਯਤਨ ਅਤੇ ਮੈਕ ਦਾ ਸਿਧਾਂਤ

1957 ਵਿੱਚ ਰੌਬਰਟ ਡਿਕੇ ਨੇ ਗਰੈਵਿਟੀ [13] ਦੀ ਇੱਕ ਸਬੰਧਤ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਥਿਊਰੀ ਵਿਕਸਿਤ ਕੀਤੀ। ਆਈਨਸਟਾਈਨ ਤੋਂ ਉਲਟ, ਡਿਕੇ ਨੇ ਮੰਨਿਆ ਕਿ ਨਾ ਕੇਵਲ ਫਰੀਕੁਐਂਸੀਆਂ ਹੀ ਬਦਲਦੀਆਂ ਹਨ, ਸਗੋਂ ਵੇਵਲੈਂਥਾਂ ਵੀ ਬਦਲਦੀਆਂ ਹਨ। ਕਿਉਂਕਿ c=νλ ਹੁੰਦੀ ਹੈ, ਇਸਲਈ ਇਸਨੇ ਨਤੀਜੇ ਵਜੋਂ ਆਈਨਸਟਾਈਨ ਦੁਆਰਾ ਮੰਨੀ ਜਾਣ ਤੋਂ ਦਿੱਗਣੇ ਮੁੱਲ ਜਿੰਨੀ c ਵਿੱਚ ਤੁਲਨਾਤਮਿਕ ਤਬਦੀਲੀ ਕੀਤੀ। ਡਿਕੇ ਨੇ ਇੱਕ ਹੇਠਾਂ ਲਿਖਿਆ ਰਿਫ੍ਰੈਕਟਿਵ ਸੂਚਕਾਂਕ ਮੰਨਿਆ ਅਤੇ ਇਸਨੂੰ ਪ੍ਰਕਾਸ਼ ਦੇ ਝੁਕਾਔ ਵਾਸਤੇ ਨਿਰੀਖਤ ਮੁੱਲ ਨਾਲ ਮੇਲ ਖਾਂਦਾ ਸਾਬਤ ਕੀਤਾ:

n=cc0=1+2GMrc2 (eqn.5)

ਮੈਕ ਦੇ ਸਿਧਾਂਤ ਨਾਲ ਸਬੰਧਿਤ ਇੱਕ ਟਿੱਪਣੀ ਵਿੱਚ, ਡਿਕੇ ਨੇ ਸੁਝਾਓ ਦਿੱਤਾ ਕਿ, ਜਦੋਂਕਿ ਸਮੀਕਰਨ 5 ਵਿੱਚ ਰਕਮ ਦਾ ਸੱਜਾ ਪਾਸਾ ਛੋਟਾ ਹੈ, ਤਾਂ ਖੱਬਾ ਪਾਸਾ, 1, “ਅਪਣੀ ਜੜ ਬ੍ਰਹਿਮੰਡ ਵਿੱਚ ਪਦਾਰਥ ਦੇ ਅਵਸ਼ੇਸ਼ਾਂ ਵਿੱਚ ਰੱਖਦਾ ਹੋ ਸਕਦਾ ਹੈ”। ਕਿਸੇ ਵਧ ਰਹੇ ਹੌਰਿਜ਼ਨ ਵਾਲੇ ਬ੍ਰਹਿਮੰਡ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ ਹੋਰ ਅਤੇ ਹੋਰ ਜਿਆਦਾ ਪੁੰਜ ਉੱਪਰ ਦਿੱਤੇ ਰਿੱਫ੍ਰੈਕਟਿਵ ਸੂਚਕਾਂਕ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਂਦੇ ਹਨ, ਡਿਕੇ ਨੇ ਅਜਿਹੀ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਨੂੰ ਮੰਨਿਆ ਜਿੱਥੇ ਵਕਤ ਪਾ ਕੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ c ਘਟ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਬ੍ਰਹਿਮੰਡੀ ਰੈੱਡਸ਼ਿਫਟ [13] ਦੀ ਇੱਕ ਬਦਲਵੀਂ ਵਿਆਖਿਆ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੀ ਹੈ (ਪੰਨਾ 374)। ਡਿਕੇ ਦੀ ਥਿਊਰੀ c= 299792458 m/s ਵਾਲੀ ਸਟੈਂਡਰਡ ਇਕਾਈ ਪਰਿਭਾਸ਼ਾ ਦੇ ਵਿਰੁੱਧ ਨਹੀਂ ਜਾਂਦੀ, ਕਿਉਂਕਿ ਵਕਤ ਅਤੇ ਲੰਬਾਈ ਦੀਆਂ ਇਕਾਈਆਂ ਸੈਕੰਡ ਅਤੇ ਮੀਟਰ ਇਸਦੇ ਮੁਤਾਬਿਕ ਬਦਲ ਸਕਦੀਆਂ ਹਨ।

ਆਈਨਸਟਾਈਨ ਅਤੇ ਡਿਕ ਨਾਲ ਸਬੰਧਤ ਹੋਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਯਤਨ

ਹਾਲਾਂਕਿ ਡਿਕੇ ਦੇ ਯਤਨ ਨੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਬਦਲੇ ਵਿੱਚ ਇੱਕ ਥਿਊਰੀ ਪੇਸ਼ ਕੀਤੀ ਸੀ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਦੀ ਤਬਦੀਲੀ ਦੀ ਧਾਰਨਾ ਫੇਰ ਵੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਵਿਰੁੱਧ ਨਹੀਂ ਹੈ। ਸਗੋਂ ਇਹ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਅਸਿੱਧੇ ਰੂਪ ਵਿੱਚ ਮੌਜੂਦ ਹੈ, ਜੋ ਨਿਰਦੇਸ਼ਾਂਕ ਸਪੇਸ ਵਿਵਰਣ ਵਿੱਚ ਆਉਂਦਾ ਹੈ, ਜਿਵੇਂ ਕਈ ਪੁਸਤਕਾਂ ਵਿੱਚ ਹਵਾਲਾ ਦਿੱਤਾ ਗਿਆ ਹੈ। ਯਾਨਿ ਕਿ, ਵਿੱਲ [14], ਸਮੀਕਰਨ 6.14, 6.15, ਜਾਂ ਵੇਨਬਰਗ [15], ਸਮੀਕਰਨ 9.2.5 ((ϕ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਪੁਟੈਂਸ਼ਲ  −GM/r ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ): “ਨੋਟ ਕਰੋ ਕਿ ਫੋਟੌਨ ਦੀ ਸਪੀਡ … |u|=1+2ϕ+O(v3) ਹੁੰਦੀ ਹੈ।” ਇਸ ਉੱਤੇ ਅਧਾਰਿਤ, ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਮਾਡਲ ਵਿਕਸਿਤ ਕੀਤੇ ਗਏ ਹਨ ਜੋ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ [16] ਦੇ ਸਾਰੇ ਗਿਆਤ ਟੈਸਟਾਂ ਨਾਲ ਸਹਿਮਤ ਰਹਿੰਦੇ ਹਨ, ਪਰ ਉੱਚ-ਵਿਵਸਥ ਟੈਸਟਾਂ [17] ਵਾਸਤੇ ਕੁੱਝ ਵੱਖਰੇ ਹੁੰਦੇ ਹਨ। ਹੋਰ ਮਾਡਲ ਸਮਾਨਤਾ ਸਿਧਾਂਤ [18] ਉੱਤੇ ਰੋਸ਼ਨੀ ਪਾਉਣ ਦਾ ਦਾਅਵਾ ਕਰਦੇ ਹਨ, ਜਾਂ ਡੀਰਾਕ ਦੀ ਵਿਸ਼ਾਲ ਸੰਖਿਆ ਪਰਿਕਲਪਨਾ [19] ਨਾਲ ਸਬੰਧ ਜੋੜਨ ਦਾ ਦਾਅਵਾ ਕਰਦੇ ਹਨ।

ਕੌਸਮਿਕ ਇਨਫਲੇਸ਼ਨ ਦੇ ਬਦਲ ਦੇ ਤੌਰ ਤੇ ਅਜੋਕੀਆਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਥਿਊਰੀਆਂ

ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਦਾ ਪ੍ਰਸਤਾਵ ਸੁਤੰਤਰਤਾ ਨਾਲ ਜੀਨ-ਪੀਅਰੇ ਪੇਟਿਟ ਦੁਆਰਾ 1988 [20][21][22][23] ਵਿੱਚ, ਜੌਹਨ ਮੋੱਫਟ ਦੁਆਰਾ 1992 [24] ਵਿੱਚ, ਅਤੇ ਆਂਦ੍ਰੇਸ ਅਲਬ੍ਰੈਚਟ ਤੇ ਜੋਆਓ ਮਅਗਿਓਇਜੋ ਦੀ ਇੱਕ ਦੋ –ਮੈਂਬਰੀ ਟੀਮ ਦੁਆਰਾ 1998 [25][26][27][28][29][30] ਵਿੱਚ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਦੀ ਹੌਰਿਜ਼ਮ ਸਮੱਸਿਆ ਨੂੰ ਸਮਝਾਉਣ ਵਾਸਤੇ ਰੱਖਿਆ ਗਿਆ ਹੈ ਅਤੇ ਬ੍ਰਹਿਮੰਡੀ ਇਨਫਲੇਸ਼ਨ ਦੇ ਬਦਲ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। ਇੱਕ ਬਦਲਵਾਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਮਾਡਲ ਵੀ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਗਿਆ ਹੈ। [31]

ਪੇਟਿਟ ਦੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਮਾਡਲ ਅੰਦਰ, c ਦੀ ਤਬਦੀਲੀ ਸਪੇਸ ਅਤੇ ਵਕਤ ਪੈਮਾਨਾ ਕਾਰਕ ਤਬਦੀਲੀਆਂ ਨੂੰ ਮਿਲਾਉਂਦੇ ਭੌਤਿਕੀ ਸਥਿਰਾਂਕਾਂ ਦੀਆਂ ਸਾਰੀਆਂ ਇਕੱਠੀਆਂ ਤਬਦੀਲੀਆਂ ਸਾ ਸਾਥ ਦਿੰਦੇ ਹਨ, ਤਾਂ ਜੋ ਇਹਨਾਂ ਸਥਿਰਾਂਕਾਂ ਦੇ ਨਾਪ ਅਤੇ ਸਾਰੀਆਂ ਸਮੀਕਰਨਾਂ ਬ੍ਰਹਿਮੰਡ ਦੀ ਉਤਪਤੀ ਦੌਰਾਨ ਸਥਿਰ ਰਹਿਣ। ਆਈਨਸਟਾਈਨ ਫੀਲਡ ਇਕੁਏਸ਼ਨਾਂ, ਆਈਨਸਟਾਈਨ ਸਥਿਰਾਂਕ ਵਿੱਚ c ਅਤੇ G ਦੀਆਂ ਅਸਾਨ ਇਕੱਠੀਆਂ ਤਬਦੀਲੀਆਂ ਦੌਰਾਨ ਸਥਿਰ (ਇਨਵੇਰੀਅੰਟ) ਰਹਿੰਦਾ ਹੈ। ਇਸ ਮਾਡਲ ਅਨੁਸਾਰ, ਬ੍ਰਹਿਮੰਡੀ ਹੌਰਿਜ਼ਨ R ਵਾਂਗ ਵਧਦਾ ਹੈ, ਜੋ ਸਪੇਸ ਪੈਮਾਨਾ ਹੁੰਦਾ ਹੈ, ਜੋ ਪੂਰਵ-ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਦੀ ਇੱਕਸਾਰਤਾ (ਹੋਮੋਜੀਨੀਅਟੀ) ਨੂੰ ਯਕੀਨੀ ਬਣਾਉਂਦਾ ਹੈ, ਜੋ ਨਿਰੀਖਣਾਤਮਿਕ ਆਂਕੜੇ ਵਿੱਚ ਫਿੱਟ ਬੈਠਦੀ ਹੈ। ਬਾਦ ਵਾਲਾ ਮਾਡਲ ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਦੀ ਉੱਚ ਊਰਜਾ ਘਣਤਾ ਪ੍ਰਤਿ ਸਥਿਰਾਂਕ ਵਿੱਚ ਬਦਲਾਓ ਤੇ ਪਾਬੰਧੀ ਲਗਾਉਂਦਾ ਹੈ, ਜੋ ਰੇਡੀਏਸ਼ਨ ਦੇ ਨਿਯੰਤ੍ਰਨ ਵਾਲੇ ਖੇਤਰ ਦੇ ਬਹੁਤ ਸ਼ੁਰੂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ ਇੱਕ ਮੈਟ੍ਰਿਕ (ਗਣਿਤ) ਵਾਲੀ ਸਪੇਸ-ਐਨਟ੍ਰੌਪੀ ਨਾਲ ਸਪੇਸਟਾਈਮ ਕਨਫਰਮਲ ਤੌਰ ਤੇ ਪੱਧਰਾ ਪਛਾਣਿਆ ਜਾਂਦਾ ਹੈ। [32][33]

ਮੋਫੱਟ ਅਤੇ ਅਲਬ੍ਰੇਚਟ-ਮੈਗਿਉਜੋ ਤੋਂ ਆਇਆ ਵਿਚਾਰ ਇਹ ਹੈ ਕਿ ਸ਼ੁਰੂਆਤੀ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ 60 ਗੁਣਾ ਤੇਜ਼ ਸੀ, ਜਿਸ ਕਾਰਨ ਫੈਲ ਰਹੇ ਬ੍ਰਹਿਮੰਡ ਦੇ ਦੂਰ ਸਥਿਤ ਖੇਤਰਾਂ ਕੋਲ ਬ੍ਰਹਿਮੰਡ ਦੀ ਸ਼ੁਰੂਆਤ ਵੇਲਵੇ ਪਰਸਪਰ ਮੇਲਜੋਲ ਕਰਨ ਦਾ ਵਕਤ ਸੀ। ਸੁਰਬੱਧ-ਬਣਤਰ ਦੀ ਤਬਦੀਲੀ ਨਾਲ ਹੌਰਿਜ਼ਨ ਸਮੱਸਿਆ ਨੂੰ ਹੱਲ ਕਰਨ ਦਾ ਕੋਇ ਤਰੀਕਾ ਨਹੀਂ ਹੈ, ਕਿਉਂਕਿ ਇਸਦੀ ਤਬਦੀਲੀ ਸਪੇਸਟਾਈਮ ਦੀ ਕਾਰਣਾਤਮਿਕ ਬਣਤਰ ਨੂੰ ਨਹੀਂ ਬਦਲਦੀ। ਅਜਿਹਾ ਕਰਨ ਵਾਸਤੇ ਨਿਊਟਨ ਦਾ ਸਥਿਰਾਂਕ ਬਦਲ ਕੇ ਜਾਂ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਨੂੰ ਪੁਨਰ-ਪਰਿਭਾਸ਼ਿਤ ਕਰਕੇ ਗਰੈਵਿਟੀ ਵਿੱਚ ਸੁਧਾਰ ਕਰਨ ਦੀ ਜਰੂਰਤ ਪੈ ਸਕਦੀ ਹੈ। ਕਲਾਸੀਕਲ ਤੌਰ ਤੇ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਵਿੱਚ ਤਬਦੀਲੀ ਵਾਲੀਆਂ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨਾਂ ਇਸ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਤਰੀਕੇ ਨਾਲ [34][35] ਆਈਨਸਟਾਈਨ ਦੀਆਂ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀਆਂ ਥਿਊਰੀਆਂ ਦੇ ਲੌਰੰਟਜ਼ ਇਨਵੇਰੀਅੰਸ ਨੂੰ ਤੋੜ ਕੇ ਅਯਾਮਿਕ ਮਾਤਰਾ c ਵਿੱਚ ਤਬਦੀਲੀ ਕਰਕੇ ਪ੍ਰਸਤਾਵ ਰੱਖਦੀਆਂ ਹਨ। ਹੋਰ ਅਜੋਕੀਆਂ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ ਸਥਾਨਿਕ ਲੌਰੰਟਜ਼ ਸਥਰਿਤਾ ਨੂੰ ਸੁਰੱਖਿਅਤ ਰੱਖਦੀਆਂ ਹਨ। [27]

ਹੋਰ ਵਿਭਿੰਨ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਮੌਜੂਦਗੀਆਂ

ਬਣਾਵਟੀ ਫੋਟੌਨ

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ ਕੁੱਝ ਕੈਲਕੁਲੇਸ਼ਨਾਂ ਵਿੱਚ ਬਣਾਵਟੀ ਫੋਟੌਨ ਵੀ ਥੋੜੀਆਂ ਦੂਰੀਆਂ ਵਾਸਤੇ ਕਿਸੇ ਵੱਖਰੀ ਸਪੀਡ ਉੱਤੇ ਗਤੀ ਕਰ ਸਕਦੇ ਹਨ; ਫੇਰ ਵੀ, ਇਸਦਾ ਅਰਥ ਇਹ ਨਹੀਂ ਹੁੰਦਾ ਕਿ ਕੁੱਝ ਵੀ ਪ੍ਰਕਾਸ਼ ਤੋਂ ਤੇਜ਼ ਗਤੀ ਕਰ ਸਕਦਾ ਹੈ। ਜਦੋਂਕਿ ਇਹ ਦਾਅਵਾ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ (ਹੇਠਾਂ ਦਿੱਤੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਦੀ ਅਲੋਚਨਾ ਦੇਖੋ) ਕਿਸੇ ਅਯਾਮਹੀਣ ਮਾਤਰਾ ਨੂੰ ਵਕਤ ਅੰਦਰ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਬਦਲਣ ਵਰਗਾ ਦਾ ਕੋਈ ਅਰਥ ਨਹੀਂ ਦਿੱਤਾ ਜਾ ਸਕਦਾ (ਜੋ ਕਿਸੇ ਅਯਾਮਹੀਣ ਸੰਖਿਆ ਤੋਂ ਉਲਟ ਹੈ ਜਿਵੇਂ ਸੁਰਬੱਧ ਰਚਨਾ ਸਥਿਰਾਂਕ), ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨ ਵਿੱਚ ਕੁੱਝ ਵਿਵਾਦਾਗ੍ਰਸਤ ਥਿਊਰੀਆਂ ਅੰਦਰ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤਾਂ ਨੂੰ ਬਦਲ ਕੇ ਵੀ ਬਦਲ ਜਾਂਦੀ ਦਿਖਾਈ ਗਈ ਹੈ।

ਬਦਲਦੀ ਫੋਟੌਨ ਸਪੀਡ

ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੋਰਸ ਦਾ ਮਾਧਿਅਮ ਫੋਟੌਨ ਪ੍ਰਕਾਸ਼ ਦਾ ਕਣ ਪੁੰਜਹੀਣ ਮੰਨਿਆ ਗਿਆ ਹੈ। ਪ੍ਰੋਕਾ ਐਕਸ਼ਨ ਨਾਮਕ ਕ੍ਰਿਆ ਇੱਕ ਪੁੰਜਯੁਕਤ [36] ਫੋਟੌਨ ਦੀ ਇੱਕ ਥਿਊਰੀ ਦਰਸਾਉਂਦੀ ਹੈ। ਕਲਾਸੀਕਲ ਤੌਰ ਤੇ, ਇੱਕ ਅਜਿਹਾ ਫੋਟੌਨ ਮੌਜੂਦ ਹੋਣਾ ਸੰਭਵ ਹੈ ਜੋ ਬਹੁਤ ਅੱਤ ਹਲਕਾ ਹੋਵੇ ਪਰ ਨਿਊਟ੍ਰੀਨੋ ਵਾਂਗ ਬਹੁਤ ਸੂਖਮ ਪੁੰਜ ਰੱਖਦਾ ਹੋਵੇ। ਇਹ ਫੋਟੌਨ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਘੱਟ ਸਪੀਡ ਤੇ ਸੰਚਾਰਿਤ ਹੋਣਗੇ ਅਤੇ ਪੋਲਰਾਇਜ਼ੇਸ਼ਨ ਦੀਆਂ ਤਿੰਨ ਦਿਸ਼ਾਵਾਂ ਰੱਖਦੇ ਹਨ। ਫੇਰ ਵੀ, ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ, ਫੋਟੌਨ ਦਾ ਪੁੰਜ ਗੇਜ ਸਥਿਰਤਾ ਜਾਂ ਪੁਨਰ-ਮਾਨਕੀਕਰਨ-ਯੋਗਤਾ ਨਾਲ ਮੇਲ ਨਹੀਂ ਖਾਂਦਾ ਅਤੇ ਇਸਲਈ ਆਮਤੌਰ ਤੇ ਰੱਦ ਕਰ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ।

ਫੇਰ ਵੀ, ਪੁੰਜ-ਯੁਕਤ ਫੋਟੌਨ ਦੀ ਇੱਕ ਕੁਆਂਟਮ ਥਿਊਰੀ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਪ੍ਰਤਿ ਵਿਲਸੋਨੀਅਨ ਪ੍ਰਭਾਵੀ ਫੀਲਡ ਥਿਊਰੀ ਵਿੱਚ ਵਿਚਾਰੀ ਜਾ ਸਕਦੀ ਹੈ, ਜਿੱਥੇ, ਇਸ ਗੱਲ ਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਕਿ ਫੋਟੌਨ ਦੀ ਪੈਦਾਵਰ ਹਿਗਜ਼ ਮਕੈਨਿਜ਼ਮ ਰਾਹੀਂ ਹੋਈ ਹੈ ਜਾਂ ਪ੍ਰੋਕਾ ਲਗਰਾਂਜੀਅਨ ਵਿੱਚ ਕਿਸੇ ਹੋਰ ਤਰਾਂ ਹੋਈ ਹੈ, ਵਿਭਿੰਨ ਨਿਰੀਖਣਾਂ/ਪ੍ਰਯੋਗਾਂ ਦੁਆਰਾ ਨਤੀਜਨ ਹੱਦਾਂ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਹੋ ਸਕਦੀਆਂ ਹਨ। ਇਸ ਲਈ, ਇਸ ਕਰਕੇ, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਸਥਿਰਾਂਕ ਨਹੀਂ ਹੁੰਦੀ। [37]

ਕੁਆਂਟਮ ਥਿਊਰੀ ਵਿੱਚ ਬਦਲਦੀ c

ਫਰਮਾ:Main

ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਅੰਦਰ ਹੇਜ਼ਨਬਰਗ ਅਨਸਰਟਨਟੀ ਸਬੰਧ ਇਸ਼ਾਰਾ ਕਰਦੇ ਹਨ ਕਿ ਫੋਟੌਨ ਘੱਟ ਅੰਤਰਾਲਾਂ ਵਾਸਤੇ ਕਿਸੇ ਵੀ ਸਪੀਡ ਉੱਤੇ ਗਤੀ ਕਰ ਸਲਦੇ ਹਨ। ਥਿਊਰੀ ਦੀ ਫੇਨਮੈਨ ਡਾਇਗ੍ਰਾਮ ਵਿਆਖਿਆ ਵਿੱਚ, ਇਹਨਾਂ ਨੂੰ ਬਣਾਵਟੀ ਫੋਟੌਨ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਪੁੰਜ ਸ਼ੈੱਲ ਤੋਂ ਸੰਚਾਰਿਤ ਹੋਣ ਦੁਆਰਾ ਵੱਖਰਾ ਪਛਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਫੋਟੌਨ ਕੋਈ ਵੀ ਵਿਲੌਸਿਟੀ ਰੱਖਦੇ ਹੋ ਸਕਦੇ ਹਨ, ਜਿਸ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਤੇਜ਼ ਵਿਲੌਸਿਟੀਆਂ ਵੀ ਹੋ ਸ਼ਾਮਿਲ ਸਕਦੀਆਂ ਹਨ। ਰਿਚਰਡ ਫੇਨਮੈਨ ਦੇ ਹਵਾਲੇ ਮੁਤਾਬਿਕ …

“ਪ੍ਰਕਾਸ਼ ਵਾਸਤੇ ਪ੍ਰੰਪਰਿਕ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ਼ੋਂ ਤੇਜ਼ (ਜਾਂ ਧੀਮਾ) ਗਤੀ ਕਰਨ ਵਾਸਤੇ ਵੀ ਇੱਕ ਐਂਪਲੀਟਿਊਡ ਹੁੰਦਾ ਹੈ। ਆਖਰੀ ਲੈਕਚਰ ਵਿੱਚ ਤੁਸੀਂ ਖੋਜਿਆ ਹੈ ਕਿ ਪ੍ਰਕਾਸ਼ ਸਿਰਫ ਸਿੱਧੀਆਂ ਰੇਖਾਵਾਂ ਵਿੱਚ ਹੀ ਨਹੀਂ ਚਲਦਾ; ਹੁਣ, ਤੁਸੀਂ ਖੋਜੋ ਕਿ ਇਹ ਸਿਰਫ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਉੱਤੇ ਹੀ ਗਤੀ ਨਹੀਂ ਕਰਦਾ! ਇਹ ਤੁਹਾਨੂੰ ਹੈਰਾਨ ਕਰ ਸਕਦਾ ਹੈ ਕਿ ਕਿਸੇ ਫੋਟੌਨ ਵਾਸਤੇ ਪ੍ਰੰਪਰਿਕ ਸਪੀਡ c ਨਾਲੋਂ ਤੇਜ਼ ਜਾਂ ਧੀਮਾ ਗਤੀ ਕਰਨ ਲਈ ਇੱਕ ਐਂਪਲੀਟਿਊਡ ਹੁੰਦਾ ਹੈ।” [38]

ਇਹ ਬਣਾਵਟੀ ਫੋਟੌਨ, ਫੇਰ ਵੀ, ਕਾਰਣਾਤਮਿਕਤਾ ਜਾਂ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਉਲੰਘਣਾ ਨਹੀਂ ਕਰਦੇ, ਕਿਉਂਕਿ ਇਹ ਸਿੱਧੇ ਤੌਰ ਤੇ ਨਿਰੀਖਣਯੋਗ ਨਹੀਂ ਹਨ ਅਤੇ ਥਿਊਰੀ ਅੰਦਰ ਸੂਚਨਾ ਗੈਰ-ਕਾਰਣਾਤਮਿਕ ਤੌਰ ਤੇ ਸੰਚਾਰਿਤ ਨਹੀਂ ਹੋ ਸਕਦੀ। ਫੇਨਮੈਨ ਡਾਇਗ੍ਰਾਮ ਅਤੇ ਬਣਾਵਟੀ ਫੋਟੌਨ ਆਮਤੌਰ ਤੇ ਕਿਸੇ ਸੱਚਮੁੱਚ ਵਾਪਰ ਰਹੀ ਭੌਤਿਕੀ ਤਸਵੀਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਆਖਿਅਤ ਨਹੀਂ ਕੀਤੇ ਜਾਂਦੇ, ਸਗੋਂ ਇੱਕ ਅਸਾਨ ਕੈਲਕੁਲੇਸ਼ਨ ਔਜ਼ਾਰ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਅਖਿਆਬੱਧ ਕੀਤੇ ਜਾਂਦੇ ਹਨ (ਜੋ, ਕੁੱਝ ਮਾਮਲਿਆਂ ਵਿੱਚ, ਪ੍ਰਕਾਸ਼ ਤੋਂ ਤੇਜ਼ ਵਿਲੌਸਿਟਿਆਂ ਵੈਕਟਰਾਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਹੁੰਦੇ ਲਗਦੇ ਹਨ)।

ਹੋਰ ਸਥਿਰਾਂਕਾਂ ਨਾਲ ਸਬੰਧ ਅਤੇ ਉਹਨਾਂ ਦੀ ਤਬਦੀਲੀ

ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ G

1937 ਵਿੱਚ, ਪੌਲ ਡੀਰਾਕ ਅਤੇ ਹੋਰਾਂ ਨੇ ਵਕਤ ਨਾਲ ਬਦਲਦੇ ਕੁਦਰਤੀ ਸਥਿਰਾਂਕਾਂ ਦੇ ਨਤੀਜਿਆਂ ਦੀ ਜਾਂਚ ਸ਼ੁਰੂ ਕੀਤੀ। [39] ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਡੀਰਾਕ ਨੇ ਹੋਰ ਬੁਨਿਆਦੀ ਬਲਾਂ ਦੀ ਤੁਲਨਾ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨਲ ਫੋਰਸ ਦੀ ਸਾਪੇਖਿਕ ਕਮਜੋਰੀ ਨੂੰ ਸਮਝਾਉਣ ਲਈ ਨਿਊਟਨ ਦੇ ਸਥਿਰਾਂਕ G ਦੇ ਮੁੱਲ ਵਿੱਚ ਹਰ ਸਾਲ 1011 ਵਿੱਚੋਂ ਸਿਰਫ 5 ਹਿੱਸਿਆਂ ਵਿੱਚ ਇੱਕ ਤਬਦੀਲੀ ਦਾ ਪ੍ਰਸਤਾਵ ਰੱਖਿਆ। ਇਸਨੂੰ ਡੀਰਾਕ ਦੀ ਵਿਸ਼ਾਲ ਸੰਖਿਆਵਾਂ ਦੀ ਪਰਿਕਲਪਨਾ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ।

ਫੇਰ ਵੀ, ਰਿਚਰਡ ਫੇਨਮੈਨ ਨੇ ਸਾਬਤ ਕੀਤਾ [40] ਕਿ ਭੂਗੋਲਿਕ ਅਤੇ ਸੂਰਜੀ ਸਿਸਟਮ ਨਿਰੀਖਣਾਂ ਉੱਤੇ ਅਧਾਰਿਤ ਪਿਛਲੇ 4 ਬਿਲੀਅਨ ਸਾਲਾਂ ਦੌਰਾਨ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ ਵਿੱਚ ਇੰਨੀ ਤਬਦੀਲੀ ਨਹੀਂ ਹੋਈ ਹੋ ਸਕਦੀ (ਭਾਵੇਂ ਇਹ ਹੋਰ ਸਥਿਰਾਂਕਾਂ ਨੂੰ ਬਦਲੇ ਬਗੈਰ ਸਥਿਰਾਂਕ ਬਾਬਤ ਧਾਰਨਾਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਹੋ ਸਕਦਾ ਹੈ)। (ਤਾਕਤਵਰ ਸਮਾਨਤਾ ਸਿਧਾਂਤ ਵੀ ਦੇਖੋ)

ਸੁਰਬੱਧ ਬਣਤਰ ਸਥਿਰਾਂਕ α

ਦੂਰਸਥਿਤ ਕੁਆਸਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰਦੇ ਇੱਕ ਗਰੁੱਪ ਨੇ 105 ਵਿੱਚੋਂ ਇੱਕ ਹਿੱਸਾ ਪੱਧਰ ਉੱਤੇ ਸੁਰਬੱਧ ਬਣਤਰ ਸਥਿਰਾਂਕ [41] ਦੀ ਇੱਕ ਤਬਦੀਲੀ ਪਛਾਣਨ ਦਾ ਦਾਅਵਾ ਕੀਤਾ ਹੈ। ਹੋਰ ਵਿਦਵਾਨਾਂ ਨੇ ਇਸ ਨਤੀਜੇ ਉੱਤੇ ਵਿਵਾਦ ਕਰਦੇ ਹਨ। ਕੁਆਸਰਾਂ ਦਾ ਅਧਿਐਨ ਕਰਨ ਵਾਲੇ ਹੋਰ ਗਰੁੱਪਾਂ ਨੇ ਕਿਤੇ ਜਿਆਦਾ ਉੱਚੀ ਸੰਵੇਂਦਨਾਵਾਂ ਉੱਤੇ ਕੋਈ ਪਛਾਣ=ਨਯੋਗ ਤਬਦੀਲੀ ਦਾ ਦਾਅਵਾ ਨਹੀਂ ਕੀਤਾ। [42][43][44]

1972 ਵਿੱਚ ਓਕਲੋ ਨੇਚੁਰਲ ਨਿਊਕਲੀਅਰ ਫਿਜ਼ਨ ਰੀਐਕਟਰ ਦੀ ਖੋਜ ਤੋਂ ਬਾਦ ਦੇ ਤਿੰਨ ਦਹਾਕਿਆਂ ਤੋਂ, ਹੋਰ ਵੀ ਜਿਆਦਾ ਸਖਤ ਸਥਿਰਾਂਕ ਕੋਈ ਵੀ ਤਬਦੀਲੀ ਦੀ ਮੌਜਦਗੀ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੇ ਨਹੀਂ ਲੱਗੇ [45][46], ਜੋ ਇੱਕ (ਅਨੁਮਾਨਿਤ) 2 ਬਿਲੀਅਨ ਸਾਲ ਪੁਰਾਣੇ ਫਿਜ਼ਨ ਰੀਐਕਸ਼ਨ ਦੀਆਂ ਪੈਦਾਵਰਾਂ ਹੋਣਾ ਨਿਰਧਾਰਿਤ ਕੀਤੇ ਕੁੱਝ ਆਈਸੋਟ੍ਰਿਪਿਕ ਅਵਸ਼ੇਸ਼ਾਂ ਦੇ ਅਧਿਐਨ ਰਾਹੀਂ ਰੱਖੇ ਗਏ ਸਨ। ਫੇਰ ਵੀ, ਲੌਸ ਅਲਮੌਸ ਨੈਸ਼ਨਲ ਲੈਬਰੌਟਰੀ ਦੇ ਲੈਮੋਰੀਅਕਸ ਅਤੇ ਟੌਰਜਰਸਨ ਨੇ 2004 ਵਿੱਚ ਓਕਲੋ ਤੋਂ ਆਂਕੜੇ ਦਾ ਇੱਕ ਨਵਾਂ ਵਿਸ਼ਲੇਸ਼ਣ ਕੀਤਾ, ਅਤੇ ਨਤੀਜਾ ਕੱਢਿਆ ਕਿ ਪਿਛਲੇ 2 ਬਿਲੀਅਨ ਸਾਲਾਂ ਵਿੱਚ α, 108 ਵਿੱਚੋਂ 4.5ਵਾਂ ਹਿੱਸਾ ਬਦਲ ਗਿਆ ਹੈ। ਉਹਨਾਂ ਨੇ ਦਾਅਵਾ ਕੀਤਾ ਕਿ ਇਹ ਖੋਜ ਸ਼ਾਇਦ 20% ਤੱਕ ਸ਼ੁੱਧ ਸੀ। ਸ਼ੁੱਧਤਾ ਕੁਦਰਤੀ ਰੀਐਕਟਰ ਵਿੱਚ ਅਸ਼ੁੱਧਤਾਵਾਂ ਅਤੇ ਤਾਪਮਾਨ ਦੇ ਅਨੁਮਾਨਾਂ ਉੱਤੇ ਨਿਰਭਰ ਹੁੰਦੀ ਹੈ। ਇਹ ਨਤੀਜੇ ਅਜੇ ਹੋਰ ਰਿਸਰਚਰਾਂ ਦੁਆਰਾ ਸਾਬਤ ਕੀਤੇ ਜਾਣੇ ਬਾਕੀ ਹਨ। [47][48][49]

ਪੌਲ ਡੇਵਿਸ ਅਤੇ ਸਾਥੀਆਂ ਨੇ ਸੁਝਾਇਆ ਹੈ ਕਿ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ ਇਹ ਵੱਖਰਾ ਕਰਨਾ ਸੰਭਵ ਹੈ ਕਿ ਕਿਹੜੇ ਸੁਰਬੱਧ ਬਣਤਰ ਸਥਿਰਾਂਕ ਦੇ ਕਿਹੜੇ ਅਯਾਮਯੁਕਤ ਸਥਿਰਾਂਕ (ਬੁਨਿਆਦੀ ਚਾਰਜ, ਪਲੈਂਕ ਦਾ ਸਥਿਰਾਂਕ, ਅਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਗਤੀ), ਤਬਦੀਲੀ [50] ਵਾਸਤੇ ਜਿਮੇਵਾਰ ਹਨ। ਫੇਰ ਵੀ, ਇਸ ਗੱਲ ਦਾ ਹੋਰਾਂ ਦੁਆਰਾ ਵਿਵਾਦ ਕੀਤਾ ਗਿਆ ਹੈ ਅਤੇ ਆਮਤੌਰ ਤੇ ਇਸਨੂੰ ਸਵੀਕਾਰ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ। [51][52]

ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਧਾਰਨਾ ਦੀਆਂ ਅਲੋਚਨਾਵਾਂ

ਅਯਾਮਹੀਣ ਅਤੇ ਅਯਾਮਯੁਕਤ ਮਾਤਰਾਵਾਂ

ਇਹ ਗੱਲ ਸਾਬਤ ਕਰਨੀ ਪਏਗੀ ਕਿ ਇੱਕ ਅਯਾਮਯੁਕਤ ਮਾਤਰਾ ਵਿੱਚ ਤਬਦੀਲੀ ਦਾ ਅਸਲ ਅਰਥ ਕੀ ਹੈ, ਕਿਉਂਕਿ ਅਜਿਹੀ ਕੋਈ ਵੀ ਮਾਤਰਾ ਸਿਰਫ ਇਕਾਈਆਂ (ਯੂਨਿਟਾਂ) ਦੀ ਚੋਣ ਬਦਲਣ ਦੁਆਰਾ ਹੀ ਬਦਲੀ ਜਾ ਸਕਦੀ ਹੈ। ਜੌਹਨ ਬੈਰੋ ਨੇ ਲਿਖਿਆ ਹੈ:

“ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਸਬਕ ਜੋ ਅਸੀਂ ਸਿੱਖਦੇ ਹਾਂ ਉਹ ਇਹ ਹੈ ਕਿ α ਵਰਗੇ ਸ਼ੁੱਧ ਨੰਬਰਾਂ ਦੁਆਰਾ ਸੰਸਾਰ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨਾ ਉਹ ਚੀਜ਼ ਹੈ ਜੋ ਵਾਸਤਵ ਵਿੱਚ ਸੰਸਾਰਾਂ ਦੇ ਵੱਖਰੇ ਹੋਣ ਦਾ ਅਰਥ ਹੈ। ਸ਼ਿੱਧ ਨੰਬਰ ਨੂੰ ਅਸੀਂ ਫਾਈਨ ਸਟ੍ਰਕਚਰ ਕੌਂਸਟੈਂਟ ਕਹਿੰਦੇ ਹਾਂ ਅਤੇ ਇਸਨੂੰ α ਰਾਹੀਂ ਲਿਖਦੇ ਹਾਂ, ਜੋ ਇਲੈਕਟ੍ਰੌਨ ਚਾਰਜ e, ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ c, ਅਤੇ ਪਲੈਂਕ ਦੇ ਸਥਰਿਾਂਕ, h ਦਾ ਇੱਕ ਮੇਲ ਹੈ। ਪਹਿਲੀ ਨਜ਼ਰ ਵਿੱਚ ਅਸੀਂ ਇਹ ਸੋਚਣ ਵੱਲ ਮਜਬੂਰ ਹੋ ਜਾਂਦੇ ਹੋਵਾਂਗੇ ਕਿ ਇੱਕ ਸੰਸਾਰ, ਜਿਸ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੀ ਗਤੀ ਧੀਮੀ ਸੀ, ਕੋਈ ਵੱਖਰਾ ਸੰਸਾਰ ਹੋਵੇਗਾ। ਪਰ ਇਹ ਗਲਤੀ ਹੋਵੇਗੀ। ਜੇਕਰ c, n, ਅਤੇ e ਸਭ ਨੂੰ ਇਸਤਰਾਂ ਬਦਲ ਦਿੱਤਾ ਜਾਵੇ ਕਿ ਉਹਨਾਂ ਦੇ ਮੈਟ੍ਰਿਕ (ਜਾਂ ਕੋਈ ਹੋਰ) ਇਕਾਈ ਪ੍ਰਣਾਲੀ ਵਿੱਚ ਮੁੱਲਭੌਤਿਕੀ ਸਥਿਰਾਂਕਾਂ ਦੀਆਂ ਸਾਡੀਆਂ ਸਾਰਣੀਆਂ ਵਿੱਚ ਦੇਖੇ ਜਾਣ ਤੇ ਵੱਖਰੇ ਮਿਲਣ, ਪਰ α ਦਾ ਮੁੱਲ ਉਹੀ ਰਹੇ, ਤਾਂ ਇਹ ਨਵਾਂ ਸੰਸਾਰ ਸਾਡੇ ਸੰਸਾਰ ਤੋਂ ਨਿਰੀਖਣਾਤਮਿਕ ਤੌਰ ਤੇ ਗੈਰ-ਵੱਖਰਾਕਰਨਯੋਗ ਹੋਵੇਗਾ। ਸੰਸਾਰਾਂ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਜਿਹੜੀ ਚੀਜ਼ ਗਿਣੀ ਜਾਂਦੀ ਹੈ ਉਹ ਕੁਦਰਤ ਦੇ ਅਯਾਮਹੀਣ ਸਥਿਰਾਂਕਾਂ ਦੇ ਮੁੱਲ ਹੁੰਦੇ ਹਨ। ਜੇਕਰ ਸਾਰੇ ਪੁੰਜਾਂ (ਪਲੈਂਕ ਪੁੰਜ mP ਸਮੇਤ) ਦਾ ਮੁੱਲ ਦੁੱਗਣਾ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਤੁਹਾਨੂੰ ਪਤਾ ਨਹੀਂ ਚੱਲ ਸਕੇਗਾ ਕਿਉਂਕਿ ਪੁੰਜਾਂ ਦੇ ਕਿਸੇ ਵੀ ਜੋੜੇ ਦੇ ਅਨੁਪਾਤਾਂ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਸ਼ੁੱਧ ਨੰਬਰ ਬਦਲਦੇ ਨਹੀਂ। [53]

ਭੌਤਿਕੀ ਨਿਯਮ ਦੀ ਕੋਈ ਵੀ ਸਮੀਕਰਨ ਇੱਕ ਅਜਿਹੇ ਅੰਦਾਜ਼ ਵਿੱਚ ਦਰਸਾਈ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਅਯਾਮਿਕ ਮਾਤਰਾਵਾਂ ਵਰਗੀਆਂ ਮਾਤਰਾਵਾਂ ਤੋਂ ਵਿਰੁੱਧ ਸਾਰੀਆਂ ਅਯਾਮਿਕ ਮਾਤਰਾਵਾਂ ਦਾ ਮਾਨਕੀਕਰਨ ਹੋ ਜਾਵੇ (ਜਿਸਨੂੰ ਗੈਰ-ਅਯਾਮਾਤਮਿਕਤਾ ਕਹਿੰਦੇ ਹਨ) ਜਿਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਸਿਰਫ ਅਯਾਮਹੀਣ ਮਾਤਰਾਵਾਂ ਬਾਕੀ ਬਚਦੀਆਂ ਹਨ। ਅਸਲ ਵਿੱਚ, ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਅਪਣੀਆਂ ਯੂਨਿਟਾਂ ਕੁੱਝ ਇਸਤਰਾਂ ਚੁਣ ਸਕਦੇ ਹਨ ਕਿ ਭੌਤਿਕੀ ਸਥਿਰਾਂਕ c, G, ħ = h/(2π), 4πε0, ਅਤੇ k B , ਦਾ ਮੁੱਲ ਇੱਕ ਬਣ ਜਾਵੇ , ਜਿਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਹਰੇਕ ਭੌਤਿਕੀ ਮਾਤਰਾ ਇਸਦੀ ਸਬੰਧਤ ਪਲੈਂਕ ਯੂਨਿਟ ਪ੍ਰਤਿ ਮਾਨਕੀਕ੍ਰਿਤ ਹੋ ਜਾਂਦੀ ਹੈ। [54] ਇਸਦੇ ਵਾਸਤੇ, ਇਹ ਦਾਅਵਾ ਕੀਤਾ ਗਿਆ ਹੈ ਕਿ ਕਿਸੇ ਅਯਾਮਿਕ ਮਾਤਰਾ ਦੀ ਉਤਪਤੀ ਨੂੰ ਵਿਸ਼ੇਸ਼ੀਕ੍ਰਿਤ ਕਰਨਾ ਬੇਅਰਥਾ ਹੈ ਅਤੇ ਕੋਈ ਸਮਝ ਨਹੀਂ ਰੱਖਦਾ। ਜਦੋਂ ਪਲੈਂਕ ਯੂਨਿਟਾਂ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ ਅਤੇ ਭੌਤਿਕੀ ਨਿਯਮ ਦੀਆਂ ਅਜਿਹੀਆਂ ਸਮੀਕਰਨਾਂ ਨੂੰ ਇਸ ਗੈਰ-ਅਯਾਮਾਤਮਿਕ ਰੂਪ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਤਾਂ c, G, ħ = h/(2π), 4πε0, ਅਤੇ k B ਵਰਗਾ ਕੋਈ ਵੀ ਭੌਤਿਕੀ ਸਥਿਰਾਂਕ ਨਹੀਂ ਬਚਦਾ, ਸਿਰਫ ਅਯਾਮਹੀਣ ਮਾਤਰਾਵਾਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਉਹਨਾਂ ਦੀ ਮਾਨਵਸ਼ਾਸਤਰੀ ਯੂਨਿਟ ਨਿਰਭਰਤਾ ਦੀ ਛੀਨਾ ਝਪਟੀ ਸਦਕਾ, ਨਾ ਹੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ, ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ, ਅਤੇ ਨਾ ਹੀ ਪਲੈਂਕ ਦਾ ਸਥਿਰਾਂਕ ਹੀ, ਅਜਿਹੀ ਪਰਿਕਲਪਿਤ ਤਬਦੀਲੀ ਪ੍ਰਤਿ ਭੌਤਿਕੀ ਵਾਸਤਵਿਕਤਾ ਦੀਆਂ ਗਣਿਤਿਕ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਬਚਦਾ ਹੈ।

ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਪਰਿਕਲਪਿਤ ਤਬਦੀਲ ਹੋ ਰਹੇ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ G ਦੇ ਮਾਮਲੇ ਵਿੱਚ, ਪੁਟੈਂਸ਼ਲਾਤਮਿਕ ਤੌਰ ਤੇ ਬਦਲਣ ਵਾਲੀਆਂ ਸਬੰਧਤ ਅਯਾਮਹੀਣ ਮਾਤਰਾਵਾਂ ਅੰਤ ਨੂੰ ਪਲੈਂਕ ਪੁੰਜ ਦੇ ਮੁਢਲੇ ਕਣਾਂ ਦੇ ਪੁੰਜਾਂ ਨਾਲ ਅਨੁਪਾਤ ਬਣ ਜਾਣਗੀਆਂ। ਕੁੱਝ ਪ੍ਰਮੁੱਖ ਅਯਾਮਹੀਣ ਮਾਤਰਾਵਾਂ (ਸਥਿਰਾਂਕ ਹੋਣੀਆਂ ਸੋਚੀਆਂ ਜਾਂਦੀਆਂ) ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੀਆਂ ਹਨ, (ħ, e, ε0 ਵਰਗੀਆਂ ਹੋਰ ਅਯਾਮਯੁਕਤ ਮਾਤਰਾਵਾਂ ਵਿਚਕਾਰ) ਜਿਹਨਾਂ ਵਿੱਚ ਫਾਈਨ ਸਟ੍ਰਕਚਰ ਕੌਂਸਟੈਂਟ ਜਾਂ ਪ੍ਰੋਟੌਨ-ਇਲੈਕਟ੍ਰੌਨ ਪੁੰਜ ਅਨੁਪਾਤ ਮਹੱਤਵਪੂਰਨ ਹਨ, ਅਰਥ ਭਰਪੂਰ ਸਥਿਰਤਾ (ਇਨਵੇਰੀਅੰਸ) ਰੱਖਦੀਆਂ ਹਨ ਅਤੇ ਉਹਨਾਂ ਦੀ ਸੰਭਵ ਉਲੰਘਣਾਂ ਦਾ ਅਧਿਐਨ ਜਾਰੀ ਰਹਿੰਦਾ ਹੈ। [55]

ਰਿਲੇਟੀਵਿਟੀ ਨਾਲ ਸਬੰਧ ਅਤੇ c ਦੀ ਪਰਿਭਾਸ਼ਾ

ਵਿਸ਼ੇਸ਼ਾਤਮਿਕ ਤੌਰ ਤੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਵੱਕ ਇਸ਼ਾਰਾ ਕਰਦੇ ਹੋਏ, ਜੇਕਰ SI ਮੀਟਰ ਪਰਿਭਾਸ਼ਾ ਇੱਕ ਆਦਰਸ਼ ਬਾਰ ਉੱਤੇ ਇੱਲ ਲੰਬਾਈ ਦੇ ਤੌਰ ਤੇ ਇਸਦੀ ਪੂਰਵ-1960 ਵਾਲੀ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਦੁਬਾਰਾ ਪਲਟਾ ਦਿੱਤੀ ਜਾਂਵੇ, ਤਾਂ c ਵਿੱਚ ਇੱਕ ਸਮਝਯੋਗ ਤਬਦੀਲੀ (ਇਸ ਪ੍ਰੋਟੋਟਾਈਪ ਲੰਬਾਈ ਰਾਹੀਂ ਗੁਜ਼ਰਨ ਲਈ ਪ੍ਰਕਾਸ਼ ਨੂੰ ਲੱਗੇ ਸਮੇਂ ਦੀ ਮਾਤਰਾ ਦਾ ਉਲਟ/ਰੈਸੀਪ੍ਰੋਕਲ), ਪਲੈਂਕ ਲੈਂਥ ਪ੍ਰਤਿ ਮੀਟਰ ਪ੍ਰੋਟੋਟਾਈਪ ਦੇ ਅਯਾਮਹੀਣ ਅਨੁਪਾਤ ਵਿੱਚ ਤਬਦੀਲੀ ਦੇ ਤੌਰ ਤੇ ਹੋਰ ਜਿਆਦਾ ਬੁਨਿਆਦੀ ਤੌਰ ਤੇ ਵਿਅਖਿਅਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਸੀ ਜਾਂ ਪਲੈਂਕ ਟਾਈਮ ਪ੍ਰਤਿ ਸਟੈਂਡਰਡ ਯੂਨਿਟ ਸੈਕੰਡ ਦੇ ਅਯਾਮਹੀਣ ਅਨੁਪਾਤ ਦੇ ਤੌਰ ਤੇ ਵਿਅਖਿਅਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਸੀ ਜਾਂ ਦੋਹਾਂ ਵਿੱਚ ਤਬਦੀਲੀ ਦੇ ਤੌਰ ਤੇ ਵਿਅਖਿਆਬੱਧ ਹੋ ਸਕਦੀ ਸੀ। ਜੇਕਰ ਮੀਟਰ ਪ੍ਰੋਟੋਟਾਈਪ ਨੂੰ ਬਣਾਉਣ ਵਾਲੇ ਐਟਮਾਂ ਦੀ ਸੰਖਿਆ ਨਹੀਂ ਬਦਲਦੀ (ਜਿਵੇਂ ਕਿ ਕਿਸੇ ਸਥਿਰ ਪ੍ਰੋਟੋਟਾਈਪ ਵਾਸਤੇ ਅਜਿਹਾ ਹੋਣਾ ਵੀ ਚਾਹੀਦਾ ਹੈ), ਤਾਂ c ਦੇ ਮੁੱਲ ਵਿੱਚ ਕੋਈ ਸਮਝਯੋਗ ਤਬਦੀਲੀ, ਪਲੈਂਕ ਲੈਂਥ ਦੇ ਬੋਹਰ ਦੇ ਰੇਡੀਅਸ ਪ੍ਰਤਿ ਜਾਂ ਐਟਮਾਂ ਦੇ ਅਕਾਰਾਂ ਪ੍ਰਤਿ ਅਯਾਮਹੀਣ ਅਨੁਪਾਤ, ਜਾਂ ਇਸਦੇ ਬਦਲੇ ਵਿੱਚ, ਪਲੈਂਕ ਟਾਈਮ ਦੇ ਕਿਸੇ ਖਾਸ ਸੀਜ਼ੀਅਮ-133 ਰੇਡੀਏਸ਼ਨ ਦੇ ਨਿਯਮਿਤ ਕਾਲ (ਪੀਰੀਅਡ) ਪ੍ਰਤਿ ਅਨੁਪਾਤ, ਜਾਂ ਦੋਹਾਂ ਕਿਸਮਾਂ ਦੇ ਅਯਾਮਹੀਣ ਅਨੁਪਾਤਾਂ ਵਿੱਚ ਹੋਰ ਬੁਨਿਆਦੀ ਤਬਦੀਲੀ ਦਾ ਨਤੀਜਾ ਹੋ ਸਕਦੀ ਸੀ।

ਬਦਲਦੀ c ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨਾਂ ਦੀ ਆਮ ਅਲੋਚਨਾ

ਇੱਕ ਬਹੁਤ ਜਿਆਦਾ ਸਰਵ ਸਧਾਰਨ ਨਜ਼ਰੀਏ ਤੋਂ, ਜੀ. ਐਲਿਸ ਨੇ ਵਾਸਤਾ ਦਰਸਾਇਆ ਕਿ ਇੱਕ ਬਦਲ ਰਹੀ c, ਕਿਸੇ ਸਥਿਰਾਂਕ c ਉੱਤੇ ਨਿਰਭਰ ਕਰਨ ਵਾਲੇ ਤਾਜ਼ਾ ਸਿਸਟਮ ਨੂੰ ਬਦਲਣ ਲਈ ਅਜੋਕੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦਾ ਬਹੁਤ ਜਿਆਦਾਤਰ ਹਿੱਸਾ ਦੁਬਾਰਾ ਲਿਖਣ ਲਈ ਮਜਬੂਰ ਕਰ ਸਕਦਾ ਹੈ। [56] ਐਲਿਸ ਨੇ ਦਾਅਵਾ ਕੀਤਾ ਕਿ ਕੋਈ ਵੀ ਬਦਲਦੀ c ਥਿਊਰੀ

  1. ਜਰੂਰ ਹੀ ਦੂਰੀ ਦੇ ਨਾਪਾਂ ਨੂੰ ਪੁਨਰਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
  2. ਜਰੂਰ ਹੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ ਮੈਟ੍ਰਿਕ ਟੈਂਸਰ ਵਾਸਤੇ ਇੱਕ ਬਦਲਵੀਂ ਸਮੀਕਰਨ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
  3. ਜਰੂਰ ਹੀ ਮੈਕਸਵੈੱਲ ਸਮੀਕਰਨਾਂ ਨੂੰ ਸੋਧਦੀ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
  4. ਜਰੂਰ ਹੀ ਹੋਰ ਸਾਰੀਆਂ ਭੌਤਿਕੀ ਥਿਊਰੀਆਂ ਪ੍ਰਤਿ ਅਨੁਕੂਲ ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ।
ਇਹ ਵਾਸਤੇ ਆਈਨਸਟਾਈਨ (1911) ਅਤੇ ਡਿਕੇ (1957) ਦੇ ਪ੍ਰਸਤਾਵਾਂ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦੇ ਹਨ ਕਿ ਨਹੀਂ, ਬਹਿਸ [57] ਦਾ ਵਿਸ਼ਾ ਰਿਹਾ ਹੈ, ਭਾਵੇਂ ਪ੍ਰਕਾਸ਼ ਦੀ ਬਦਲਣਯੋਗ ਸਪੀਡ ਬ੍ਰਹਿਮੰਡ ਵਿਗਿਆਨਾਂ ਮੁੱਖਧਾਰਾ ਭੌਤਿਕ ਵਿਗਿਆਨ ਤੋਂ ਬਾਹਰ ਰਹੀ ਹੈ। 

ਹਵਾਲੇ

ਫਰਮਾ:Reflist

ਬਾਹਰੀ ਲਿੰਕ

  1. ਫਰਮਾ:Cite journal
  2. ਫਰਮਾ:Cite journal
  3. ਫਰਮਾ:Cite journal
  4. ਫਰਮਾ:Cite book
  5. ਫਰਮਾ:Cite book
  6. ਫਰਮਾ:Cite book
  7. ਫਰਮਾ:Cite book
  8. ਫਰਮਾ:Cite book
  9. ਫਰਮਾ:Cite book
  10. ਫਰਮਾ:Cite book
  11. ਫਰਮਾ:Cite book
  12. ਫਰਮਾ:Cite book
  13. 13.0 13.1 ਫਰਮਾ:Cite journal
  14. ਫਰਮਾ:Cite book
  15. ਫਰਮਾ:Cite book
  16. ਫਰਮਾ:Cite journal
  17. ਫਰਮਾ:Cite journal
  18. ਫਰਮਾ:Cite journal
  19. ਫਰਮਾ:Cite journal
  20. ਫਰਮਾ:Cite journal
  21. ਫਰਮਾ:Cite journal
  22. ਫਰਮਾ:Cite journal
  23. ਫਰਮਾ:Cite journal
  24. ਫਰਮਾ:Cite journal
  25. ਫਰਮਾ:Cite journal
  26. ਫਰਮਾ:Cite journal
  27. 27.0 27.1 ਫਰਮਾ:Cite journal
  28. ਫਰਮਾ:Cite journal
  29. ਫਰਮਾ:Cite journal
  30. ਫਰਮਾ:Cite book
  31. ਫਰਮਾ:Cite arXiv
  32. ਫਰਮਾ:Cite conference
  33. ਫਰਮਾ:Cite arXiv
  34. ਫਰਮਾ:Cite journal
  35. ਫਰਮਾ:Cite journal
  36. ਫਰਮਾ:Cite book
  37. ਫਰਮਾ:Cite journal
  38. ਫਰਮਾ:Cite book
  39. ਫਰਮਾ:Cite journal
  40. ਫਰਮਾ:Cite book
  41. ਫਰਮਾ:Cite journal
  42. ਫਰਮਾ:Cite journal
  43. ਫਰਮਾ:Cite journal
  44. ਫਰਮਾ:Cite journal
  45. ਫਰਮਾ:Cite journal
  46. ਫਰਮਾ:Cite journal
  47. ਫਰਮਾ:Cite journal
  48. ਫਰਮਾ:Cite web
  49. ਫਰਮਾ:Cite web
  50. ਫਰਮਾ:Cite journal
  51. M. J. Duff, "Comment on time-variation of fundamental constants", ਫਰਮਾ:Arxiv.
  52. ਫਰਮਾ:Cite journal
  53. John D. Barrow, The Constants of Nature; From Alpha to Omega – The Numbers that Encode the Deepest Secrets of the Universe, Pantheon Books, New York, 2002, ISBN 0-375-42221-8.
  54. J. P. Uzan, "The fundamental constants and their variation: Observational status and theoretical motivations," Rev. Mod. Phys. 75, 403 (2003). ਫਰਮਾ:Arxiv
  55. ibid
  56. ਫਰਮਾ:Cite journal
  57. ਫਰਮਾ:Cite journal