ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕ

testwiki ਤੋਂ
imported>Satdeepbot (ਪਰਿਭਾਸ਼ਾ: clean up ਦੀ ਵਰਤੋਂ ਨਾਲ AWB) ਵੱਲੋਂ ਕੀਤਾ ਗਿਆ 14:39, 16 ਸਤੰਬਰ 2020 ਦਾ ਦੁਹਰਾਅ
(ਫ਼ਰਕ) ←ਪੁਰਾਣਾ ਦੁਹਰਾਅ | ਸਭ ਤੋਂ ਨਵਾਂ ਦੁਹਰਾਅ (ਫ਼ਰਕ) | ਨਵਾਂ ਦੁਹਰਾਅ → (ਫ਼ਰਕ)
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ
2GM=1 ਸਮਝਾਉਣ ਵਾਸਤੇ ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਚਿੱਤਰ। ਚੌਥਾਈ ਹਿੱਸਿਆਂ ਵਿੱਚ ਬਲੈਕ ਹੋਲ ਦਾ ਅੰਦਰੂਨੀ ਹਿੱਸਾ -2, ਵਾਈਟ ਹੋਲ ਦਾ ਅੰਦਰੂਨੀ ਹਿੱਸਾ- 4, ਅਤੇ ਦੋ ਬਾਹਰੀ ਖੇਤਰ 1 ਅਤੇ 3 ਨੰਬਰ ਸ਼ਾਮਿਲ ਹਨ। 45 ਡਿਗਰੀ ਵਾਲੀਆਂ ਬਿੰਦੂ-ਦਾਰ ਰੇਖਾਵਾਂ, ਜੋ ਇਹਨਾਂ ਚਾਰੇ ਖੇਤਰਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰਦੀਆਂ ਹਨ, ਈਵੈਂਟ ਹੌਰਾਇਜ਼ਨ ਹਨ। ਚਿੱਤਰ ਦੇ ਸ਼ਿਖਰ ਅਤੇ ਤਲ ਨੂੰ ਜੋੜਨ ਵਾਲੇ ਹਾਈਪਰਬੋਲੇ ਭੌਤਿਕੀ ਸਿੰਗੁਲਰਟੀਆਂ ਹਨ। ਪੇਲਰ ਹਾਈਪਰਬੋਲੇ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਸ ਨਿਰਦੇਸ਼ਾਂਕ ਦੀ ਰੂਪਰੇਖਾ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ, ਅਤੇ ਉਰਿਜਨ ਰਾਹੀਂ ਗੁਜ਼ਰਦੀਆਂ ਸਿੱਧਿਆਂ ਰੇਖਾਵਾਂ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਟਾਈਮ-ਨਿਰਦੇਸ਼ਾਂਕ ਦੀ ਰੂਪਰੇਖਾ ਪ੍ਰਸਤੁਤ ਕਰਦੀਆਂ ਹਨ।

ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਵਿੱਚ, ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕ, ਜਿਹਨਾਂ ਦਾ ਨਾਮ ਮਾਰਟਿਨ ਕਰੁਸਕਲ ਅਤੇ ਜੌਰਜ ਸਜ਼ਿਕਰਸ ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਕਿਸੇ ਬਲੈਕ ਹੋਲ ਵਾਸਤੇ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਖਾਗਣਿਤ ਲਈ ਇੱਕ ਨਿਰਦੇਸ਼ਾਂਕ ਸਿਸਟਮ ਹੈ। ਇਹਨਾਂ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦਾ ਫਾਇਦਾ ਇਹ ਹੈ ਕਿ ਇਹ ਵੱਧ ਤੋਂ ਵੱਧ ਫੈਲਾਏ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ ਵਾਲੀ ਸਾਰੀ ਦੀ ਸਾਰੀ ਸਪੇਸਟਾਈਮ ਮੈਨੀਫੋਲਡ ਨੂੰ ਕਵਰ ਕਰਦੇ ਹਨ ਅਤੇ ਭੌਤਿਕੀ ਸਿੰਗੁਲਰਟੀ ਦੇ ਬਾਹਰ ਹਰੇਕ ਸਥਾਨ ਉੱਤੇ ਚੰਗੀ ਤਰਾਂ ਵਰਤਾਓ ਕਰਦੇ ਹਨ।

ਪਰਿਭਾਸ਼ਾ

ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਚਿੱਤਰ। ਐਨੀਮੇਸ਼ਨ ਦੀ ਹਰੇਕ ਫਰੇਮ ਸਤਹਿ ਦੇ ਰੂਪ ਵਿੱਚ ਇੱਕ ਨੀਲਾ ਹਾਈਪਰਬੋਲਾ ਦਿਖਾਉਂਦੀ ਹੈ ਜਿੱਥੇ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਲ ਨਿਰਦੇਸ਼ਾਂਕ ਸਥਿਰ ਹੁੰਦਾ ਹੈ (ਅਤੇ ਹਰੇਜ ਅਗਲੀ ਫਰੇਮ ਵਿੱਚ ਉਦੋਂ ਤੱਕ ਇੱਕ ਹੋਰ ਛੋਟੇ ਮੁੱਲ ਵਾਲਾ ਹੁੰਦਾ ਹੈ, ਜਦੋਂ ਤੱਕ ਇਹ ਸਿੰਗੁਲਰਟੀਆਂ ਤੱਕ ਜਾ ਕੇ ਮੁੱਕ ਨਹੀਂ ਜਾਂਦਾ।

ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਨਿਰਦੇਸ਼ਾਂਕਾਂ (t,r,θ,ϕ), ਤੋਂ t ਅਤੇ r ਨੂੰ ਇੱਕ ਨਵੇਂ ਨਿਰਦੇਸ਼ਾਂਕ T ਅਤੇ ਇੱਕ ਨਵੇਂ ਸਥਾਨਿਕ ਨਿਰਦੇਸ਼ਾਂਕ X ਨਾਲ ਬਦਲ ਕੇ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: ਬਾਹਰੀ ਖੇਤਰ r>2GM ਵਾਸਤੇ,

T=(r2GM1)1/2er/4GMsinh(t4GM)
X=(r2GM1)1/2er/4GMcosh(t4GM)

ਅਤੇ ਅੰਦਰੂਨੀ ਖੇਤਰ 0<r<2GM ਲਈ:

T=(1r2GM)1/2er/4GMcosh(t4GM)
X=(1r2GM)1/2er/4GMsinh(t4GM)

ਧਿਆਨ ਦੇਓ ਕਿ GM, ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਪੁੰਜ ਮਾਪਦੰਡ ਨਾਲ ਗੁਣਾ ਕੀਤਾ ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਥਿਰਾਂਕ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਹ ਆਰਟੀਕਲ c = 1 ਵਾਲੀਆਂ ਯੂਨਿਟਾਂ ਵਰਤਦਾ ਹੈ। ਇਸ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਡੀਅਸ, ਸ਼ਪਸ਼ਟ ਤੌਰ ਤੇ ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ,

T2X2=(1r2GM)er/2GM

ਜਾਂ ਲੰਬਾਰਟ ਡਬਲਿਊ ਫੰਕਸ਼ਨ ਵਰਤਦੇ ਹੋਏ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦਾ ਹੈ

r2GM=1+W(X2T2e).

ਇਹਨਾਂ ਨਵੇਂ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਵਿੱਚ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਬਲੈਕ ਹੋਲ ਮੈਨੀਫੋਲਡ ਦਾ ਮੈਟ੍ਰਿਕ ਇਸ ਸਮੀਕਰਨ ਤੋਂ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ

ds2=32G3M3rer/2GM(dT2+dX2)+r2dΩ2,

ਜੋ (− + + +) ਮੈਟ੍ਰਿਕ ਸਿਗਨੇਚਰ ਪ੍ਰੰਪਰਾ ਵਰਤਦੇ ਹੋਏ ਲਿਖੀ ਗਈ ਹੈ ਅਤੇ ਜਿੱਥੇ ਮੈਟ੍ਰਿਕ ਦਾ ਐਂਗੁਲਰ ਹਿੱਸਾ (2-ਸਫੀਅਰ ਦਾ ਲਾਈਨ ਐਲੀਮੈਂਟ) ਇਹ ਹੁੰਦਾ ਹੈ:

dΩ2 =def dθ2+sin2θdϕ2

ਇਵੈਂਟ ਹੌਰਾਇਜ਼ (r = 2GM) ਦੀ ਸਥਿਤੀ ਇਹਨਾਂ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਵਿੱਚ T=±X ਰਾਹੀਂ ਦਰਸਾਈ ਜਾਂਦੀ ਹੈ। ਧਿਆਨ ਦੇਓ ਕਿ ਮੈਟ੍ਰਿਕ ਪੂਰੀ ਚੰਗੀ ਤਰਾਂ ਪਰਿਭਾਸ਼ਤ ਹੁੰਦਾ ਹੈ ਅਤੇ ਇਵੈਂਟ ਹੌਰਾਇਜ਼ ਉੱਤੇ ਸਿੰਗੁਲਰ ਨਹੀਂ ਹੁੰਦਾ। ਕਰਵੇਚਰ ਸਿੰਗੁਲਰਟੀ ਦੀ ਸਥਿਤੀ T2X2=1 ਉੱਤੇ ਹੁੰਦੀ ਹੈ।

ਵੱਧ ਤੋਂ ਵੱਧ ਫੈਲਾਇਆ ਗਿਆ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਹੱਲ

ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਅਤੇ ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦਰਮਿਆਨ ਪਰਿਵਰਤਨ r > 2GM, ਅਤੇ −∞ < t < ∞ ਲਈ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਜੋ ਉਹ ਦਾਇਰਾ ਹੈ ਜਿਸ ਲਈ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਨਿਰਦੇਸ਼ਾਂਕ ਅਰਥ ਰੱਖਦੇ ਹਨ। ਫੇਰ ਵੀ ਇਸ ਖੇਤਰ ਵਿੱਚ,, r ਅਰਧ ਵਿਆਸ T ਅਤੇ X ਦਾ ਇੱਕ ਅਵਲੋਕਣ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਫੈਲਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਵੇਂ ਕਿਸੇ ਅਵਲੋਕਣ ਫੰਕਸ਼ਨ ਨੂੰ ਘੱਟੋ-ਘੱਟ ਪਹਿਲੀ ਸਿੰਗੁਲਰਟੀ ਤੱਕ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜੋ T2X2=1 ਉੱਤੇ ਵਾਪਰਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਉਪਰਿਕਤ ਮੈਟ੍ਰਿਕ ਇਸ ਖੇਤਰ ਦੇ ਸਾਰੇ ਹਿੱਸਿਆਂ ਰਾਹੀਂ ਗੁਜ਼ਰਨ ਵਾਲਾ ਆਈਨਸਾਈਨ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦਾ ਇੱਕ ਹੱਲ ਹੈ। ਪ੍ਰਵਾਨਿਤ ਮੁੱਲ ਇਹ ਹਨ,

<X<
<T2X2<1


ਧਿਆਨ ਦੇਓ ਕਿ ਇਹ ਸ਼ਾਖਾ ਇਹ ਮੰਨਦੀ ਹੈ ਕਿ ਹੱਲ ਹਰੇਕ ਜਗਹ ਐਨਾਲਿਟਿਕ ਹੁੰਦਾ ਹੈ। ਵੱਧ ਤੋਂ ਵੱਧ ਫੈਲਾਏ ਗਏ ਹੱਲ ਵਿੱਚ, ਅਸਲ ਵਿੱਚ ਪੌਜ਼ਿਟਿਵ ਸਮੇਂ ਅਤੇ ਨੈਗਟਿਵ ਸਮੇਂ ਲਈ ਜ਼ੀਰੋ ਦੂਰੀ ਉੱਤੇ ਦੋ ਸਿੰਗੁਲਰਟੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਨੈਗਟਿਵ ਸਮਾਂ ਸਿੰਗੁਲਰਟੀ ਟਾਈਮ-ਰਿਵਰਸਲ ਬਲੈਕ-ਹੋਲ ਹੁੰਦੀ ਹੈ, ਜਿਸ ਨੂੰ ਕਦੇ ਕਦੇ ਵਾਈਟ ਹੋਲ ਦਾ ਨਾਮ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ। ਕਿਸੇ ਵਾਈਟ ਹੋਲ ਤੋਂ ਕਣ ਬਾਹਰ ਭੱਜ ਸਕਦੇ ਹਨ ਪਰ ਕਦੇ ਵੀ ਵਾਪਿਸ ਨਹੀਂ ਆ ਸਕਦੇ। ਵੱਧ ਤੋਂ ਵੱਧ ਫੈਲਾਇਆ ਗਿਆ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਰੇਖਾਗਣਿਤ 4 ਖੇਤਰਾਂ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਹਿੱਸਾ ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦੇ ਇੱਕ ਢੁਕਵੇਂ ਸੈੱਟ ਦੁਆਰਾ ਕਵਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕ, ਦੂਜੇ ਪਾਸੇ, ਸਾਰੇ ਦੇ ਸਾਰੇ ਸਪੇਸਟਾਈਮ ਮੈਨੀਫੋਲਡ ਨੂੰ ਮੱਲਦੇ ਹਨ। ਚਾਰੇ ਖੇਤਰ ਈਵੈਂਟ ਹੌਰਾਇਜ਼ਨਾਂ ਨਾਲ ਵੱਖਰੇ ਵੱਖਰੇ ਕੀਤੇ ਗਏ ਹੁੰਦੇ ਹਨ।

I ਬਾਹਰੀ ਖੇਤਰ X<T<+X 2GM<r
II ਅਂੰਦਰੂਨੀ ਬਲੈਕ ਹੋਲ |X|<T<1+X2 0<r<2GM
III ਸਮਾਂਤਰ ਬਾਹਰੀ ਖੇਤਰ +X<T<X 2GM<r
IV ਅੰਦਰੂਨੀ ਵਾਈਟ ਹੋਲ 1+X2<T<|X| 0<r<2GM


ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਅਤੇ ਕਰਿਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦਰਮਿਆਨ ਓਪਰੋਕਤ ਪਰਿਵਰਤਨ ਸਿਰਫ ਖੇਤਰ 1 ਅਤੇ 2 ਉੱਤੇ ਹੀ ਲਾਗੂ ਹੁੰਦਾ ਹੈ। ਇੱਕ ਮਿਲਦਾ ਜੁਲਦਾ ਪਰਿਵਰਤਨ ਬਾਕੀ ਦੇ ਦੋ ਖੇਤਰਾਂ ਵਾਸਤੇ ਵੀ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸ਼ਵਾਰਜ਼ਚਿਲਡ ਸਮਾਂ ਨਿਰਦੇਸ਼ਾਂਕ ਇਸ ਤਰ੍ਹਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ,

tanh(t4GM)={T/X(in I and III)X/T(in II and IV)


ਹਰੇਕ ਖੇਤਰ ਅੰਦਰ ਇਹ ਇਵੈਂਟ ਹੌਰਾਇਜ਼ਨਾਂ ਉੱਤੇ ਅਨੰਤਾਂ ਨਾਲ −∞ ਤੋਂ +∞ ਤੱਕ ਜਾਂਦਾ ਹੈ।

ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਚਿੱਤਰ ਦੇ ਗੁਣਾਤਮਿਕ ਲੱਛਣ

ਲਾਈਟਕੋਨ ਵੇਰੀਅੰਟ

ਕਰੁਸਕਲ-ਸਜ਼ਿਕਰਸ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਦੇ ਸਾਹਿਤ ਵਿੱਚ ਕਦੇ ਕਦੇ ਉਹਨਾਂ ਦਾ ਲਾਈਟਕੋਨ ਵੇਰੀਅੰਟ ਵੀ ਦਿਸਦਾ ਹੈ:

U=TX
V=T+X,

ਜਿਸ ਵਿੱਚ ਮੈਟ੍ਰਿਕ ਇਸ ਪ੍ਰਕਾਰ ਮਿਲਦਾ ਹੈ,

ds2=32G3M3rer/2GM(dUdV)+r2dΩ2,

ਅਤੇ r ਸਪਸ਼ਟ ਰੂਪ ਵਿੱਚ ਇਸ ਸਮੀਕਰਨ ਰਾਹੀਂ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ,

UV=(1r2GM)er/2GM.

[1]

ਇਹ ਲਾਈਟਕੋਨ ਨਿਰਦੇਸ਼ਾਂਕ ਲਾਭਕਾਰੀ ਲੱਛਣ ਰੱਖਦੇ ਹਨ ਕਿ ਬਾਹਰ ਜਾ ਰਹੇ ਨੱਲ ਜੀਓਡੈਸਿਕ U=constant ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ ਅਤੇ, ਜਦੋਂਕਿ ਅੰਦਰ ਦਾਖਲ ਹੋ ਰਹੇ ਨੱਲ ਜੀਓਡੈਸਿਕ V=constant ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ। ਹੋਰ ਅੱਗੇ, ਭਵਿੱਖ ਅਤੇ ਭੂਤਕਾਲ ਦੇ ਇਵੈਂਟ ਹੌਰਾਇਜ਼ਨ ਸਮੀਕਰਨ UV=0 ਰਾਹੀਂ ਮਿਲਦੇ ਹਨ ਅਤੇ ਕਰਵੇਚਰ ਸਿੰਗੁਲਰਟੀ ਸਮੀਕਰਨ UV=1 ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਕੀਤੀ ਜਾਂਦੀ ਹੈ।

ਲਾਈਟਕੋਨ ਨਿਰਦੇਸ਼ਾਂਕ ਐਡਿੰਗਟਨ-ਫਿੰਕਲਸਟਾਈਨ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਤੋਂ ਨਜ਼ਦੀਕੀ ਨਾਲ ਬਣਦੇ ਹਨ।

ਇਹ ਵੀ ਦੇਖੋ

ਨੋਟਸ

ਫਰਮਾ:Reflist

ਹਵਾਲੇ