ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ
ਕੂਲੌਂਬ ਨੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦਰਮਿਆਨ ਫੋਰਸਾਂ ਨੂੰ ਨਾਪਣ ਲਈ ਬਹੁਤ ਸਾਰੇ ਪ੍ਰਯੋਗ ਕੀਤੇ। ਜਦੋਂ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਦੇ ਰੇਖਿਕ ਅਕਾਰ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਤੋਂ ਕਿਤੇ ਸੂਖਮ ਹੁੰਦੇ ਹਨ, ਤਾਂ ਉਹਨਾਂ ਦਾ ਅਕਾਰ ਇਗਨੋਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਚਾਰਜ ਹੋਈਆਂ ਚੀਜ਼ਾਂ ਨੂੰ ਪੋਆਇੰਟ ਚਾਰਜ ਦੇ ਤੌਰ 'ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ
ਦੋ ਪੋਆਇੰਟ ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਦਾ ਫੋਰਸ ਚਾਰਜਾਂ ਦੇ ਮੁੱਲ ਦੇ ਗੁਣਨਫਲ ਦੇ ਸਿੱਧੇ ਤੌਰ 'ਤੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਡਾਇਰੈਕਟਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਦੂਰੀ ਦੇ ਉਲਟੇ ਅਨੁਪਾਤ ਵਿੱਚ (ਇਨਵਰਸਲੀ ਪਰੋਪੋਸ਼ਨਲ) ਹੁੰਦਾ ਹੈ। ਫੋਰਸ ਹਮੇਸ਼ਾ ਦੋਵੇਂ ਚਾਰਜਾਂ ਦੀ ਪੁਜੀਸ਼ਨ ਨੂੰ ਮਿਲਾਉਣ ਵਾਲੀ ਲਾਈਨ ਦੇ ਨਾਲ ਨਾਲ ਕ੍ਰਿਆ (ਐਕਟ) ਕਰਦਾ ਹੈ।
- ਮੰਨ ਲਓ ਸਾਡੇ ਕੋਲ ਦੋ ਪੋਆਇੰਟ ਚਾਰਜ ਕਿਆਊ-ਵੱਨ ਤੇ ਕਿਆਊ-ਟੂ ਹਨ ਜੋ ਵੈਕੱਮ ਅੰਦਰ ਇੱਕ ਡਿਸਟੈਂਸ r ਤੇ ਸਥਿਤ ਹੋਣ।
- ਤਾਂ ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ;
F ∝ (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2) ਜਾਂ F = k (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/(r2)
- ਜਿੱਥੇ k, ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦਾ ਮੁੱਲ ਚਾਰਜਾਂ ਨੂੰ ਵੱਖਰਾ ਕਰਨ ਵਾਲੇ ਮਾਧਿਅਮ (ਮੀਡੀਅਮ) ਦੀ ਫਿਤਰਤ ਉੱਤੇ ਅਤੇ ਯੂਨਿਟਾਂ ਦੇ ਸਿਸਟਮ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
- ਜਦੋਂ ਚਾਰਜ ਫਰੀ ਸਪੇਸ (ਹਵਾ/ਵੈਕੱਮ) ਵਿੱਚ ਸਥਿਤ ਹੁੰਦੇ ਹਨ, ਤਾਂ cgs ਸਿਸਟਮ ਵਿੱਚ ਇਸ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕਸ ਫੋਰਸ ਕੌਂਸਟੈਂਟ ਦਾ ਮੁੱਲ k = 1 ਹੁੰਦਾ ਹੈ।
- S। ਯੂਨਿਟਾਂ ਅੰਦਰ k = 9 ✕ 109 N m2 C−2 ਹੁੰਦਾ ਹੈ।
- ਅਸੀਂ ਲਿਖਦੇ ਹਾਂ;
- k = 1/(4πε₀)
- ਜਿੱਥੇ ε₀ (ਐਪਸਾਈਲਨ ਨੌਟ) ਨੂੰ ਸੁਤੰਤਰ (ਫਰੀ) ਸਪੇਸ ਦੀ ਐਬਸੋਲਿਊਟ ਇਲੈਕਟ੍ਰੀਕਲ ਪਰਮਿਟੀਵਿਟੀ (ਸ਼ੁੱਧ ਬਿਜਲਈ ਪ੍ਰਵਾਨਗੀ ਦਾ ਗੁਣ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
- ਇਸ ਤਰ੍ਹਾਂ
F = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/((4πε₀ r2)
ε₀ ਦੀਆਂ ਯੂਨਿਟਾਂ, ਡਾਇਮੈਨਸ਼ਨਾਂ ਅਤੇ ਮੁੱਲ
- ਓਪਰੋਕਤ ਇਕੁਏਸ਼ਨ ਤੋਂ;
ε₀ = (|ਕਿਆਊ-ਵੱਨ| ✕ |ਕਿਆਊ-ਟੂ|)/((4π F r2)
ਕਿਉਂਕਿ S। ਯੂਨਿਟਾਂ ਵਿੱਚ ਚਾਰਜ ਕੂਲੌਂਬ ਵਿੱਚ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਇਸਲਈ,
ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਯੂਨਿਟਾਂ = C2 N−1 m−2
- ਐਪਸਾਈਲਨ-ਨੌਟ ਦੀਆਂ ਡਾਇਮੈਨਸ਼ਨਾਂ = [M−1 L−3 A2]
- ਐਪਸਾਈਲਨ-ਨੌਟ ਦਾ ਮੁੱਲ = 1/(4π k) = 8.85 ✕ 10−12 C2 N−1 m−2
ਵੈਕਟਰ ਰੂਪ ਵਿੱਚ ਕੂਲੌਂਬ ਦਾ ਨਿਯਮ
ਜਿਵੇਂ ਅਸੀਂ ਪਹਿਲਾਂ ਪੜਿਆ ਕਿ ਕੁਲੌਂਬ ਦੇ ਨਿਯਮ ਮੁਤਾਬਿਕ, ਦੋ ਚਾਰਜਾਂ ਕਿਆਊ-ਵੱਨ ਅਤੇ ਕਿਆਊ-ਟੂ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਫੋਰਸ F ਉਹਨਾਂ ਦੇ ਚਾਰਜਾਂ ਦੇ ਗੁਣਨਫਲ ਦੇ ਡਾਇਰੈਕਟਲੀ ਪਰੋਪੋਸ਼ਨਲ ਅਤੇ ਉਹਨਾਂ ਦਰਮਿਆਨ ਡਿਸਟੈਂਸ r ਦੇ ਇਨਵਰਸਲੀ ਪ੍ਰੋਪੋਸ਼ਨਲ ਹੁੰਦਾ ਹੈ। ਯਾਨਿ ਕਿ,
ਕਿਉਂਕਿ ਫੋਰਸ ਇੱਕ ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਇਸਲਈ ਕੂਲੌਂਬ ਦੇ ਨਿਯਮ ਨੂੰ ਵੈਕਟਰ ਚਿੰਨਾਂ ਵਿੱਚ ਲਿਖਣਾ ਜਿਆਦਾ ਠੀਕ ਹੈ ਜੋ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ;
ਇੱਥੇ
- ਫਰਮਾ:Math, (ਫਰਮਾ:Math = ਫਰਮਾ:Val) ਕੁਲੌਂਬ ਕੌਂਸਟੈਂਟ ਹੈ,
- ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math ਚਾਰਜਾਂ ਦੇ ਚਿੰਨ-ਸਮੇਤ ਮੁੱਲ ਹਨ,
- ਸਕੇਲਰ ਫਰਮਾ:Math ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਡਿਸਟੈਂਸ ਹੈ,
- ਵੈਕਟਰ ਫਰਮਾ:Math ਚਾਰਜਾਂ ਦਰਮਿਆਨ ਵੈਕਟਰਾਤਮਿਕ ਡਿਸਟੈਂਸ (ਦੂਰੀ) ਹੈ, ਅਤੇ
- ਫਰਮਾ:Math (ਫਰਮਾ:Math ਤੋਂ ਫਰਮਾ:Math ਤੱਕ ਇਸ਼ਾਰਾ ਕਰਨ ਵਾਲਾ ਇੱਕ ਯੂਨਿਟ ਵੈਕਟਰ)।
- ਇਕੁਏਸ਼ਨ ਦੀ ਵੈਕਟਰ ਕਿਸਮ, ਫਰਮਾ:Math ਦੁਆਰਾ ਫਰਮਾ:Math ਉੱਤੇ ਲਾਗੂ ਕੀਤਾ ਗਿਆ ਫੋਰਸ ਫਰਮਾ:Math ਕੈਲੁਕੁਲੇਟ ਕਰਦੀ ਹੈ।
- ਜੇਕਰ ਫਰਮਾ:Math ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ ਤਾਂ ਇਸਦੀ ਜਗਹ ਫਰਮਾ:Math ਉੱਤੇ ਅਸਰ ਖੋਜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਸਨੂੰ ਨਿਊਟਨ ਦੇ ਤੀਜੇ ਨਿਯਮ ਨਾਲ ਵੀ ਕੈਲਕੁਲੇਟ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: ਫਰਮਾ:Math
ਨੋਟਸ
ਫਰਮਾ:Reflist ke = H/m is not correct it must be F/m
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
- Coulomb's Law on Project PHYSNET
- Electricity and the Atom ਫਰਮਾ:Webarchive—a chapter from an online textbook
- A maze game for teaching Coulomb's Law—a game created by the Molecular Workbench software
- Electric Charges, Polarization, Electric Force, Coulomb's Law ਫਰਮਾ:Webarchive Walter Lewin, 8.02 Electricity and Magnetism, Spring 2002: Lecture 1 (video). MIT OpenCourseWare. License: Creative Commons Attribution-Noncommercial-Share Alike.