ਗਣਿਤਿਕ ਸਥਿਰਾਂਕ ਅਤੇ ਫੰਕਸ਼ਨ

testwiki ਤੋਂ
imported>InternetArchiveBot (Rescuing 3 sources and tagging 0 as dead.) #IABot (v2.0.9.5) ਵੱਲੋਂ ਕੀਤਾ ਗਿਆ 03:27, 24 ਦਸੰਬਰ 2024 ਦਾ ਦੁਹਰਾਅ
(ਫ਼ਰਕ) ←ਪੁਰਾਣਾ ਦੁਹਰਾਅ | ਸਭ ਤੋਂ ਨਵਾਂ ਦੁਹਰਾਅ (ਫ਼ਰਕ) | ਨਵਾਂ ਦੁਹਰਾਅ → (ਫ਼ਰਕ)
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ

ਇੱਕ ਗਣਿਤਿਕ ਕੌਂਸਟੈਂਟ ਜਾਂ ਸਥਿਰਾਂਕ ਇੱਕ ਅਜਿਹਾ ਨੰਬਰ (ਸੰਖਿਆ) ਹੁੰਦਾ ਹੈ, ਜਿਸਦਾ ਕੈਲਕੁਲੇਸ਼ਨਾਂ ਲਈ ਇੱਕ ਖਾਸ ਅਰਥ ਹੁੰਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ 'ਤੇ, ਸਥਿਰਾਂਕ π (ਪਾਈ) ਦਾ ਅਰਥ ਹੈ ਕਿਸੇ ਚੱਕਰ ਦੇ ਘੇਰੇ ਦੀ ਲੰਬਾਈ ਦਾ ਇਸਦੇ ਡਾਇਆਮੀਟਰ (ਅਰਧ-ਵਿਆਸ) ਪ੍ਰਤਿ ਅਨੁਪਾਤ (ਰੇਸ਼ੋ)। ਇਹ ਮੁੱਲ ਹਮੇਸ਼ਾ ਹੀ ਕਿਸੇ ਚੱਕਰ ਲਈ ਇਹੀ ਰਹਿੰਦਾ ਹੈ।

ਸਾਰਣੀਆਂ ਦੀ ਬਣਤਰ

ਸਥਿਰਾਂਕਾਂ ਅਤੇ ਫੰਕਸ਼ਨਾਂ ਦੀ ਸਾਰਣੀ

ਨਾਮ, ਮੁੱਲ, OEIS ਅਦਿ ਉੱਤੇ ਕਲਿੱਕ ਕਰਕੇ ਤੁਸੀਂ ਸੂਚੀ ਦੇ ਔਰਡਰ ਨੂੰਚੁਣ ਸਕਦੇ ਹੋ.. ਫਰਮਾ:ਅਨੁਵਾਦ

Value Name Graphics Symbol LaTeX Formula OEIS Continued fraction Year Web format
0.74048 04896 93061 04116[Mw 1] Hermite constant Sphere packing 3D Kepler conjecture[1] μK π32...... The Flyspeck project, led by Thomas Hales, demonstrated in 2014 that Kepler's conjecture is true.[2]
 pi/(3 sqrt(2))
ਫਰਮਾ:OEIS2C [0;1,2,1,5,1,4,2,2,1,1,2,2,2,6,1,1,1,5,2,1,1,1, ...] 1611 0.74048048969306104116931349834344894
22.45915 77183 61045 47342 pi^e[3]

πe πe
 pi^e
ਫਰਮਾ:OEIS2C [22;2,5,1,1,1,1,1,3,2,1,1,3,9,15,25,1,1,5,...] 22.4591577183610454734271522045437350
2.80777 02420 28519 36522[Mw 2] Fransén-Robinson constant[4]


F 01Γ(x)dx.=e+0exπ2+ln2xdx
N[int[0 to ] {1/Gamma(x)}]
ਫਰਮਾ:OEIS2C [2;1,4,4,1,18,5,1,3,4,1,5,3,6,1,1,1,5,1,1,1...] 1978 2.80777024202851936522150118655777293
1.30568 6729 ≈ by Thomas & Dhar
1.30568 8 ≈ by McMullen[Mw 3]
Fractal dimension of the Apollonian packing of circles
[5] ਫਰਮਾ:,[6]

ε
ਫਰਮਾ:OEIS2C [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 1994
1998
1.305686729 ≈
1.305688 ≈
0.43828 29367 27032 11162

0.36059 24718 71385 485 i[Mw 4]

Infinite Tetration of i[7]


i limnni=limniiin
 i^i^i^i^i^i^...
C ਫਰਮਾ:OEIS2C
ਫਰਮਾ:OEIS2C
[0;2,3,1,1,4,2,2,1,10,2,1,3,1,8,2,1,2,1, ...]
+ [0;2,1,3,2,2,3,1,5,5,1,2,1,10,10,6,1,1...] i
0.43828293672703211162697516355126482
+ 0.36059247187138548595294052690600 i
0.92883 58271[Mw 5] Sum of the reciprocals of the averages of the twin prime pairs, JJGJJG B1 14+16+112+118+130+142+160+172+
1/4 + 1/6 + 1/12 + 1/18 + 1/30 + 1/42 + 1/60 + 1/72 + ...
ਫਰਮਾ:OEIS2C [0; 1, 13, 19, 4, 2, 3, 1, 1] 2014 0.928835827131
0.63092 97535 71457 43709[Mw 6] Fractal dimension of the Cantor set[8] df(k) limε0logN(ε)log(1/ε)=log2log3
log(2)/log(3) 
 N[3^x=2]
T ਫਰਮਾ:OEIS2C [0;1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 0.63092975357145743709952711434276085
0.31830 98861 83790 67153[Mw 7] ।nverse of Pi, Ramanujan[9]


1π 229801n=0(4n)!(1103+26390n)(n!)43964n
 2 sqrt(2)/9801 
 * Sum[n=0 to ] 
 {((4n)!/n!^4)
 *(1103+ 26390n)
 / 396^(4n)}
T ਫਰਮਾ:OEIS2C [0;3,7,15,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 0.31830988618379067153776752674502872
0.28878 80950 86602 42127[Mw 8] Flajolet and Richmond[10]


Q n=1(112n)=(1121)(1122)(1123)...
 prod[n=1 to ]
{1-1/2^n}
ਫਰਮਾ:OEIS2C [0;3,2,6,4,1,2,1,9,2,1,2,3,2,3,5,1,2,1,1,6,1,...] 1992 0.28878809508660242127889972192923078
1.53960 07178 39002 03869[Mw 9] Lieb's square ice constant[11] W2D limn(f(n))n2=(43)32=833
 (4/3)^(3/2)
A ਫਰਮਾ:OEIS2C [1;1,1,5,1,4,2,1,6,1,6,1,2,4,1,5,1,1,2,...] 1967 1.53960071783900203869106341467188655
0.20787 95763 50761 90854[Mw 10] ii[12]

ii eπ2
 e^(-π/2)
T ਫਰਮਾ:OEIS2C [0;4,1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,...] 1746 0.20787957635076190854695561983497877
4.53236 01418 27193 80962 Van der Pauw constant α πln(2)=n=04(1)n2n+1n=1(1)n+1n=4143+4547+491112+1314+15
 π/ln(2)
ਫਰਮਾ:OEIS2C [4;1,1,7,4,2,3,3,1,4,1,1,4,7,2,3,3,12,2,1,...] 4.53236014182719380962768294571666681
0.76159 41559 55764 88811[Mw 11] Hyperbolic tangent of 1[13] th1 itan(i)=e1ee+1e=e21e2+1
 (e-1/e)/(e+1/e)
T ਫਰਮਾ:OEIS2C [0;1,3,5,7,9,11,13,15,17,19,21,23,25,27,...]
= [0;ਫਰਮਾ:Overline], p∈ℕ
0.76159415595576488811945828260479359
0.59017 02995 08048 11302[Mw 12] Chebyshev constant[14]ਫਰਮਾ:,[15]



λCh Γ(14)24π3/2=4(14!)2π3/2
(Gamma(1/4)^2)
/(4 pi^(3/2))
ਫਰਮਾ:OEIS2C [0;1,1,2,3,1,2,41,1,6,5,124,5,2,2,1,1,6,1,2,...] 0.59017029950804811302266897027924429
0.07077 60393 11528 80353

-0.68400 03894 37932 129 i[Ow 1]

MKB constant
[16]ਫਰਮਾ:,[17]ਫਰਮਾ:,[18]
MI limn12n(1)xxxdx=12neiπxx1/xdx
lim_(2n->) int[1 to 2n] 
 {exp(i*Pi*x)*x^(1/x) dx}
C ਫਰਮਾ:OEIS2C
ਫਰਮਾ:OEIS2C
[0;14,7,1,2,1,23,2,1,8,16,1,1,3,1,26,1,6,1,1, ...]
- [0;1,2,6,13,41,112,1,25,1,1,1,1,3,13,2,1, ...] i
2009 0.07077603931152880353952802183028200
-0.68400038943793212918274445999266 i
1.25992 10498 94873 16476[Mw 13] Cube root of 2
Delian Constant
23 23
2^(1/3)
A ਫਰਮਾ:OEIS2C [1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,...] 1.25992104989487316476721060727822835
1.09317 04591 95490 89396[Mw 14] Smarandache Constant[19] S1 n=21μ(n)!.... where μ(n) is the Kempner function ਫਰਮਾ:OEIS2C [1;10,1,2,1,2,1,13,3,1,6,1,2,11,4,6,2,15,1,1,...] 1.09317045919549089396820137014520832
0.62481 05338 43826 58687
+ 1.30024 25902 20120 419 i
Generalized continued fraction
of i
FCG(i) i+ii+ii+ii+ii+ii+ii+i/...=1718+i(12+2171)
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
i+i/(i+i/(i+i/(i+i/(i+i/(
...)))))))))))))))))))))
C A ਫਰਮਾ:OEIS2C

ਫਰਮਾ:OEIS2C
[i;1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,i,1,..]
= [0;ਫਰਮਾ:Overline]
0.62481053384382658687960444744285144
+ 1.30024259022012041915890982074952 i
3.05940 74053 42576 14453[Mw 15][Ow 2] Double factorial
constant
Cn!! n=01n!!=e[12+γ(12,12)]
Sum[n=0 to ]{1/n!!}
ਫਰਮਾ:OEIS2C [3;16,1,4,1,66,10,1,1,1,1,2,5,1,2,1,1,1,1,1,2,...] 3.05940740534257614453947549923327861
5.97798 68121 78349 12266[Mw 16] Madelung Constant 2[20]


H2(2) πln(3)3
Pi Log[3]Sqrt[3]
ਫਰਮਾ:OEIS2C [5;1,44,2,2,1,15,1,1,12,1,65,11,1,3,1,1,...] 5.97798681217834912266905331933922774
0.91893 85332 04672 74178[Mw 17] Raabe's formula[21]


ζ(0) aa+1logΓ(t)dt=12log2π+alogaa,a0
integral_a^(a+1)
{log(Gamma(x))+a-a log(a)} dx
ਫਰਮਾ:OEIS2C [0;1,11,2,1,36,1,1,3,3,5,3,1,18,2,1,1,2,2,1,1,...] 0.91893853320467274178032973640561763
2.20741 60991 62477 96230[Mw 18] Lower limit in the moving sofa problem[22] SH π2+2π
pi/2 + 2/pi
T ਫਰਮਾ:OEIS2C [2;4,1,4,1,1,2,5,1,11,1,1,5,1,6,1,3,1,1,1,1,7,...] 1967 2.20741609916247796230685674512980889
1.17628 08182 59917 50654[Mw 19] Salem number,[23]

Lehmer's conjecture




σ10 x10+x9x7x6x5x4x3+x+1
x^10+x^9-x^7-x^6 
 -x^5-x^4-x^3+x+1
A ਫਰਮਾ:OEIS2C [1;5,1,2,17,1,7,2,1,1,2,4,7,2,2,1,1,15,1,1, ... 1983? 1.17628081825991750654407033847403505
0.37395 58136 19202 28805[Mw 20] Artin constant[24] CArtin n=1(11pn(pn1))pn = prime
Prod[n=1 to ] 
 {1-1/(prime(n) 
 (prime(n)-1))}
ਫਰਮਾ:OEIS2C [0;2,1,2,14,1,1,2,3,5,1,3,1,5,1,1,2,3,5,46,...] 1999 0.37395581361920228805472805434641641
0.42215 77331 15826 62702[Mw 21] Volume of Reuleaux tetrahedron[25] VR s312(3249π+162arctan2)
(3*Sqrt[2] - 49*Pi + 162*ArcTan[Sqrt[2]])/12
ਫਰਮਾ:OEIS2C [0;2,2,1,2,2,7,4,4,287,1,6,1,2,1,8,5,1,1,1,1, ...] 0.42215773311582662702336591662385075
2.82641 99970 67591 57554[Mw 22] Murata Constant[26] Cm n=1(1+1(pn1)2)pn:prime
Prod[n=1 to ]
{1+1/(prime(n)
-1)^2}
ਫਰਮਾ:OEIS2C [2;1,4,1,3,5,2,2,2,4,3,2,1,3,2,1,1,1,8,2,2,28,...] 2.82641999706759157554639174723695374
1.09864 19643 94156 48573[Mw 23] Paris Constant CPa n=22φφ+φn,φ=Fi con φn=1+φn1 y φ1=1 ਫਰਮਾ:OEIS2C [1;10,7,3,1,3,1,5,1,4,2,7,1,2,3,22,1,2,5,2,1,...] 1.09864196439415648573466891734359621
2.39996 32297 28653 32223[Mw 24]
Radians
Golden angle[27] b (42Φ)π=(35)π = 137.5077640500378546 ...°
(4-2*Phi)*Pi
T ਫਰਮਾ:OEIS2C [2;2,1,1,1087,4,4,120,2,1,1,2,1,1,7,7,2,11,...] 1907 2.39996322972865332223155550663361385
1.64218 84352 22121 13687[Mw 25] Lebesgue constant L2[28]


L2 15+2525π=1π0π|sin(5t2)|sin(t2)dt
1/5 + sqrt(25 - 
 2*sqrt(5))/Pi
T ਫਰਮਾ:OEIS2C [1;1,1,1,3,1,6,1,5,2,2,3,1,2,7,1,3,5,2,2,1,1,...] 1910 1.64218843522212113687362798892294034
1.26408 47353 05301 11307[Mw 26] Vardi constant[29]


Vc 32n1(1+1(2en1)2)1/2n+1 ਫਰਮਾ:OEIS2C [1;3,1,3,1,2,5,54,7,1,2,1,2,3,15,1,2,1,1,2,1,...] 1991 1.26408473530530111307959958416466949
ਫਰਮਾ:Gaps ± ਫਰਮਾ:Gaps[Mw 27] Area of the Mandelbrot fractal[30] γ This is conjectured to be: 6π1e=1.506591651 ਫਰਮਾ:OEIS2C [1;1,1,37,2,2,1,10,1,1,2,2,4,1,1,1,1,5,4,...] 1912 1.50659177 +/- 0.00000008

1.61111 49258 08376 736
111···111 27224 36828[Mw 28]
183213 ones
Exponential factorial constant SEf n=11n(n1)21=1+121+1321+14321+154321+ T ਫਰਮਾ:OEIS2C [1; 1, 1, 1, 1, 2, 1, 808, 2, 1, 2, 1, 14,...] 1.61111492580837673611111111111111111
1.11786 41511 89944 97314[Mw 29] Goh-Schmutz constant[31] CGS 0log(s+1)es1 ds=n=1ennEi(n)
Integrate{
log(s+1)
/(E^s-1)}
ਫਰਮਾ:OEIS2C [1;8,2,15,2,7,2,1,1,1,1,2,3,5,3,5,1,1,4,13,1,...] 1.11786415118994497314040996202656544
0.31813 15052 04764 13531

±1.33723 57014 30689 40 i[Ow 3]

Fixed points
Super-Logarithm[32]ਫਰਮਾ:, Tetration
W(1) limnf(x)=log(log(log(log(log(log(x))))))logs n times

For an initial value of ਫਰਮਾ:Mvar different to 0,1,e,ee,eee, etc.

-W(-1)

where W=ProductLog
Lambert W function

C ਫਰਮਾ:OEIS2C
ਫਰਮਾ:OEIS2C
[-i;1 +2i,1+i,6-i,1+2i,-7+3i,2i,2,1-2i,-1+i,-, ...] 0.31813150520476413531265425158766451
-1.33723570143068940890116214319371 i
0.28016 94990 23869 13303[Mw 30] Bernstein's constant[33]


β 12π
1/(2 sqrt(pi))
T ਫਰਮਾ:OEIS2C [0;3,1,1,3,9,6,3,1,3,14,34,2,1,1,60,2,2,1,1,...] 1913 0.28016949902386913303643649123067200
0.66016 18158 46869 57392[Mw 31] Twin Primes Constant[34]


C2 p=3p(p2)(p1)2
prod[p=3 to ]
{p(p-2)/(p-1)^2
ਫਰਮਾ:OEIS2C [0;1,1,1,16,2,2,2,2,1,18,2,2,11,1,1,2,4,1,...] 1922 0.66016181584686957392781211001455577
1.22674 20107 20353 24441[Mw 32] Fibonacci Factorial constant[35] F n=1(1(1φ2)n)=n=1(1(532)n)
prod[n=1 to ] 
 {1-((sqrt(5) -3)/2)^n}
ਫਰਮਾ:OEIS2C [1;4,2,2,3,2,15,9,1,2,1,2,15,7,6,21,3,5,1,23,...] 1.22674201072035324441763023045536165
0.11494 20448 53296 20070[Mw 33] Kepler–Bouwkamp constant[36] ρ n=3cos(πn)=cos(π3)cos(π4)cos(π5)...
prod[n=3 to ]
{cos(pi/n)}



ਫਰਮਾ:OEIS2C [0;8,1,2,2,1,272,2,1,41,6,1,3,1,1,26,4,1,1,...] 0.11494204485329620070104015746959874
1.78723 16501 82965 93301[Mw 34] Komornik–Loreti constant[37]


q 1=n=1tkqkRaiz real den=0(11q2n)+q2q1=0

tk = Thue–Morse sequence

FindRoot[(prod[n=0 to ] 
{1-1/(x^2^n)}+(x-2)
/(x-1))= 0, {x, 1.7}, 
WorkingPrecision->30]
T ਫਰਮਾ:OEIS2C [1;1,3,1,2,3,188,1,12,1,1,22,33,1,10,1,1,7,...] 1998 1.78723165018296593301327489033700839
3.30277 56377 31994 64655[Mw 35] Bronze ratio[38]


σRr 3+132=1+3+3+3+3+
(3+sqrt 13)/2
A ਫਰਮਾ:OEIS2C [3;3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,...]
= [3;ਫਰਮਾ:Overline,...]
3.30277563773199464655961063373524797
0.82699 33431 32688 07426[Mw 36] Disk Covering[39] C5 1n=01(3n+22)=332π
3 Sqrt[3]/(2 Pi)
T ਫਰਮਾ:OEIS2C [0;1,4,1,3,1,1,4,1,2,2,1,1,7,1,4,4,2,1,1,1,1,...] 1939
1949
0.82699334313268807426698974746945416
2.66514 41426 90225 18865[Mw 37] Gelfond–Schneider constant[40] GGS 22
2^sqrt{2}
T ਫਰਮਾ:OEIS2C [2;1,1,1,72,3,4,1,3,2,1,1,1,14,1,2,1,1,3,1,...] 1934 2.66514414269022518865029724987313985
3.27582 29187 21811 15978[Mw 38] Khinchin-Lévy constant[41] γ eπ2/(12ln2)
e^(\pi^2/(12 ln(2))
ਫਰਮਾ:OEIS2C [3;3,1,1,1,2,29,1,130,1,12,3,8,2,4,1,3,55,...] 1936 3.27582291872181115978768188245384386
0.52382 25713 89864 40645[Mw 39] Chi Function
Hyperbolic cosine integral
Chi()
γ+0xcosht1tdt

γ= Euler–Mascheroni constant= 0.5772156649...

Chi(x)
ਫਰਮਾ:OEIS2C [0;1,1,9,1,172,1,7,1,11,1,1,2,1,8,1,1,1,1,1,...] 0.52382257138986440645095829438325566
1.13198 82487 943[Mw 40] Viswanath constant[42] CVi limn|an|1n where an = Fibonacci sequence
lim_(n->) 
|a_n|^(1/n)
T ? ਫਰਮਾ:OEIS2C [1;7,1,1,2,1,3,2,1,2,1,8,1,5,1,1,1,9,1,...] 1997 1.1319882487943 ...
1.23370 05501 36169 82735[Mw 41] Favard constant[43] 34ζ(2) π28=n=01(2n1)2=112+132+152+172+
sum[n=1 to ]
{1/((2n-1)^2)}
T ਫਰਮਾ:OEIS2C [1;4,3,1,1,2,2,5,1,1,1,1,2,1,2,1,10,4,3,1,1,...] 1902
a
1965
1.23370055013616982735431137498451889
2.50662 82746 31000 50241 Square root of 2 pi 2π 2π=limnn!ennnn.... Stirling's approximation
sqrt (2 pi)
T ਫਰਮਾ:OEIS2C [2;1,1,37,4,1,1,1,1,9,1,1,2,8,6,1,2,2,1,3,...] 1692
a
1770
2.50662827463100050241576528481104525
4.13273 13541 22492 93846 Square root of Tau·e

τe 2πe
sqrt(2 pi e)
ਫਰਮਾ:OEIS2C [4;7,1,1,6,1,5,1,1,1,8,3,1,2,2,15,2,1,1,2,4,...] 4.13273135412249293846939188429985264
0.97027 01143 92033 92574[Mw 42] Lochs constant[44]


£Lo 6ln2ln10π2
6*ln(2)*ln(10)/Pi^2
ਫਰਮਾ:OEIS2C [0;1,32,1,1,1,2,1,46,7,2,7,10,8,1,71,1,37,1,1,...] 1964 0.97027011439203392574025601921001083
0.98770 03907 36053 46013[Mw 43] Area bounded by the
eccentric rotation of
Reuleaux triangle[45]
𝒯R a2(23+π63) where a= side length of the square
2 sqrt(3)+pi/6-3
T ਫਰਮਾ:OEIS2C [0;1,80,3,3,2,1,1,1,4,2,2,1,1,1,8,1,2,10,1,2,...] 1914 0.98770039073605346013199991355832854
0.70444 22009 99165 59273 Carefree constant 2[46]



𝒞2 n=1(11pn(pn+1))pn:prime
N[prod[n=1 to ] 
 {1 - 1/(prime(n)* 
 (prime(n)+1))}]
ਫਰਮਾ:OEIS2C [0;1,2,2,1,1,1,1,4,2,1,1,3,703,2,1,1,1,3,5,1,...] 0.70444220099916559273660335032663721
1.84775 90650 22573 51225[Mw 44] Connective constant[47][48] μ 2+2=limncn1/n

as a root of the polynomial :x44x2+2=0

sqrt(2+sqrt(2))
A ਫਰਮਾ:OEIS2C [1;1,5,1,1,3,6,1,3,3,10,10,1,1,1,5,2,3,1,1,3,...] 1.84775906502257351225636637879357657
0.30366 30028 98732 65859[Mw 45] Gauss-Kuzmin-Wirsing constant[49] λ2 limnFn(x)ln(1x)(λ)n=Ψ(x),

where Ψ(x) is an analytic function with Ψ(0)=Ψ(1)=0.

ਫਰਮਾ:OEIS2C [0;3,3,2,2,3,13,1,174,1,1,1,2,2,2,1,1,1,2,2,1,...] 1973 0.30366300289873265859744812190155623
1.57079 63267 94896 61923[Mw 46] Favard constant K1
Wallis product[50]
π2 n=1(4n24n21)=2123434565678789
Prod[n=1 to ] 
 {(4n^2)/(4n^2-1)}
T ਫਰਮਾ:OEIS2C [1;1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,1,5,1...] 1655 1.57079632679489661923132169163975144
1.60669 51524 15291 76378[Mw 47] Erdős–Borwein constant[51][52]


EB m=1n=112mn=n=112n1=11+13+17+115+...
sum[n=1 to ]
{1/(2^n-1)}
I ਫਰਮਾ:OEIS2C [1;1,1,1,1,5,2,1,2,29,4,1,2,2,2,2,6,1,7,1,...] 1949 1.60669515241529176378330152319092458
1.61803 39887 49894 84820[Mw 48] Phi, Golden ratio[53] φ 1+52=1+1+1+1+
(1+5^(1/2))/2
A ਫਰਮਾ:OEIS2C [0;1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,...]
= [0;ਫਰਮਾ:Overline,...]
-300 ~ 1.61803398874989484820458683436563811
1.64493 40668 48226 43647[Mw 49] Riemann Function Zeta(2) ζ(2) π26=n=11n2=112+122+132+142+
Sum[n=1 to ]
{1/n^2}
T ਫਰਮਾ:OEIS2C [1;1,1,1,4,2,4,7,1,4,2,3,4,10 1,2,1,1,1,15,...] 1826
to
1866
1.64493406684822643647241516664602519
1.73205 08075 68877 29352[Mw 50] Theodorus constant[54] 3 3333333333
(3(3(3(3(3(3(3) 
 ^1/3)^1/3)^1/3) 
 ^1/3)^1/3)^1/3) 
 ^1/3 ...
A ਫਰਮਾ:OEIS2C [1;1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,...]
= [1;ਫਰਮਾ:Overline,...]
-465
to
-398
1.73205080756887729352744634150587237
1.75793 27566 18004 53270[Mw 51] Kasner number R 1+2+3+4+
Fold[Sqrt[#1+#2]
 &,0,Reverse 
 [Range[20]]]
ਫਰਮਾ:OEIS2C [1;1,3,7,1,1,1,2,3,1,4,1,1,2,1,2,20,1,2,2,...] 1878
a
1955
1.75793275661800453270881963821813852
2.29558 71493 92638 07403[Mw 52] Universal parabolic constant[55] P2 ln(1+2)+2=arcsinh(1)+2
ln(1+sqrt 2)+sqrt 2
T ਫਰਮਾ:OEIS2C [2;3,2,1,1,1,1,3,3,1,1,4,2,3,2,7,1,6,1,8,7,2,1,...] 2.29558714939263807403429804918949038
1.78657 64593 65922 46345[Mw 53] Silverman constant[56]



𝒮m n=11ϕ(n)σ1(n)=n=1(1+k=11pn2kpnk1)pn:prime
ø() = Euler's totient function, σ1() = Divisor function.
Sum[n=1 to ] 
 {1/[EulerPhi(n) 
 DivisorSigma(1,n)]}
ਫਰਮਾ:OEIS2C [1;1,3,1,2,5,1,65,11,2,1,2,13,1,4,1,1,1,2,5,4,...] 1.78657645936592246345859047554131575
2.59807 62113 53315 94029[Mw 54] Area of the regular hexagon with side equal to 1[57] 𝒜6 332
3 sqrt(3)/2
A ਫਰਮਾ:OEIS2C [2;1,1,2,20,2,1,1,4,1,1,2,20,2,1,1,4,1,1,2,20,...]
[2;ਫਰਮਾ:Overline]
2.59807621135331594029116951225880855
0.66131 70494 69622 33528[Mw 55] Feller-Tornier constant[58]



𝒞FT 12n=1(12pn2)+12pn:prime=3π2n=1(11pn21)+12
[prod[n=1 to ] 
 {1-2/prime(n)^2}] 
 /2 + 1/2
T ? ਫਰਮਾ:OEIS2C [0;1,1,1,20,9,1,2,5,1,2,3,2,3,38,8,1,16,2,2,...] 1932 0.66131704946962233528976584627411853
1.46099 84862 06318 35815[Mw 56] Baxter's
Four-coloring
constant[59]
Mapamundi Four-Coloring 𝒞2 n=1(3n1)2(3n2)(3n)=34π2Γ(13)3
Γ() = Gamma function
3×Gamma(1/3) 
 ^3/(4 pi^2)
ਫਰਮਾ:OEIS2C [1;2,5,1,10,8,1,12,3,1,5,3,5,8,2,1,23,1,2,161,...] 1970 1.46099848620631835815887311784605969
1.92756 19754 82925 30426[Mw 57] Tetranacci constant

𝒯 Positive root of :x4x3x2x1=0
Root[x+x^-4-2=0]
A ਫਰਮਾ:OEIS2C [1;1,12,1,4,7,1,21,1,2,1,4,6,1,10,1,2,2,1,7,1,...] 1.92756197548292530426190586173662216
1.00743 47568 84279 37609[Mw 58] DeVicci's tesseract constant f(3,4) The largest cube that can pass through in an 4D hypercube.

Positive root of :4x428x37x2+16x+16=0

Root[4*x^8-28*x^6 
 -7*x^4+16*x^2+16 
 =0]
A ਫਰਮਾ:OEIS2C [1;134,1,1,73,3,1,5,2,1,6,3,11,4,1,5,5,1,1,48,...] 1.00743475688427937609825359523109914
1.70521 11401 05367 76428[Mw 59] Niven's constant[60] C 1+n=2(11ζ(n))
1+ Sum[n=2 to ]
{1-(1/Zeta(n))}
ਫਰਮਾ:OEIS2C [1;1,2,2,1,1,4,1,1,3,4,4,8,4,1,1,2,1,1,11,1,...] 1969 1.70521114010536776428855145343450816
0.60459 97880 78072 61686[Mw 60] Relationship among the area of an equilateral triangle and the inscribed circle. π33
n=11n(2nn)=112+1415+1718+
Dirichlet series
Sum[1/(n 
Binomial[2 n, n])
, {n, 1, }]
T ਫਰਮਾ:OEIS2C [0;1,1,1,1,8,10,2,2,3,3,1,9,2,5,4,1,27,27,6,6,...] 0.60459978807807261686469275254738524
1.15470 05383 79251 52901[Mw 61] Hermite constant[61] γ2 23=1cos(π6)
2/sqrt(3)
A 1+
ਫਰਮਾ:OEIS2C
[1;6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...]
[1;ਫਰਮਾ:Overline]
1.15470053837925152901829756100391491
0.41245 40336 40107 59778[Mw 62] Prouhet–Thue–Morse constant[62] τ n=0tn2n+1 where tn is the Thue–Morse sequence and
Where τ(x)=n=0(1)tnxn=n=0(1x2n)
T ਫਰਮਾ:OEIS2C [0;2,2,2,1,4,3,5,2,1,4,2,1,5,44,1,4,1,2,4,1,1,...] 0.41245403364010759778336136825845528
0.58057 75582 04892 40229[Mw 63] Pell constant[63]


𝒫Pell 1n=0(1122n+1)
N[1-prod[n=0 to ] 
 {1-1/(2^(2n+1)}]
T ? ਫਰਮਾ:OEIS2C [0;1,1,2,1,1,1,1,14,1,3,1,1,6,9,18,7,1,27,1,1,...] 0.58057755820489240229004389229702574
0.66274 34193 49181 58097[Mw 64] Laplace limit[64] λ xex2+1x2+1+1=1
(x e^sqrt(x^2+1))
/(sqrt(x^2+1)+1) = 1
ਫਰਮਾ:OEIS2C [0;1,1,1,27,1,1,1,8,2,154,2,4,1,5,1,1,2,1601,...] 1782 ~ 0.66274341934918158097474209710925290
0.17150 04931 41536 06586[Mw 65] Hall-Montgomery Constant[65] δ0 1+π26+2Li2(e)Li2= Dilogarithm integral
1 + Pi^2/6 + 
2*PolyLog[2, -Sqrt[E]]
ਫਰਮਾ:OEIS2C [0;5,1,4,1,10,1,1,11,18,1,2,19,14,1,51,1,2,1,...] 0.17150049314153606586043997155521210
1.55138 75245 48320 39226[Mw 66] Calabi triangle constant[66] CCR 13+(23+3i237)133223+113(2(23+3i237))13
FindRoot[ 
 2x^3-2x^2-3x+2 
 ==0, {x, 1.5}, 
 WorkingPrecision->40]
A ਫਰਮਾ:OEIS2C [1;1,1,4,2,1,2,1,5,2,1,3,1,1,390,1,1,2,11,6,2,...] 1946 ~ 1.55138752454832039226195251026462381
1.22541 67024 65177 64512[Mw 67] Gamma(3/4)[67]


Γ(34) (1+34)!=(14)!
(-1+3/4)!
ਫਰਮਾ:OEIS2C [1;4,2,3,2,2,1,1,1,2,1,4,7,1,171,3,2,3,1,1,8,3,...] 1.22541670246517764512909830336289053
1.20205 69031 59594 28539[Mw 68] Apéry's constant[68] ζ(3) n=11n3=113+123+133+143+153+=

12n=1Hnn2=12i=1j=11ij(i+j)=010101dxdydz1xyz

Sum[n=1 to ]
{1/n^3}
I ਫਰਮਾ:OEIS2C [1;4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,...] 1979 1.20205690315959428539973816151144999
0.91596 55941 77219 01505[Mw 69] Catalan's constant[69][70][71]


C 010111+x2y2dxdy=n=0(1)n(2n+1)2=112132+
Sum[n=0 to ]
{(-1)^n/(2n+1)^2}
T ਫਰਮਾ:OEIS2C [0;1,10,1,8,1,88,4,1,1,7,22,1,2,3,26,1,11,...] 1864 0.91596559417721901505460351493238411
0.78539 81633 97448 30961[Mw 70] Beta(1)[72] β(1) π4=n=0(1)n2n+1=1113+1517+19
Sum[n=0 to ]
{(-1)^n/(2n+1)}
T ਫਰਮਾ:OEIS2C [0; 1,3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1805
to
1859
0.78539816339744830961566084581987572
0.00131 76411 54853 17810[Mw 71] Heath-Brown–Moroz constant[73] CHBM n=1(11pn)7(1+7pn+1pn2)pn:prime
N[prod[n=1 to ] 
 {((1-1/prime(n))^7) 
 *(1+(7*prime(n)+1) 
 /(prime(n)^2))}]
T ? ਫਰਮਾ:OEIS2C [0;758,1,13,1,2,3,56,8,1,1,1,1,1,143,1,1,1,2,...] 0.00131764115485317810981735232251358
0.56755 51633 06957 82538 Module of
।nfinite
Tetration of i
|i| limn|ni|=|limniiin|
Mod(i^i^i^...)
ਫਰਮਾ:OEIS2C [0;1,1,3,4,1,58,12,1,51,1,4,12,1,1,2,2,3,...] 0.56755516330695782538461314419245334
0.78343 05107 12134 40705[Mw 72] Sophomore's dream1
J.Bernoulli[74]
I1 01xxdx=n=1(1)n+1nn=111122+133
Sum[n=1 to ] 
 {-(-1)^n /n^n}
ਫਰਮਾ:OEIS2C [0;1,3,1,1,1,1,1,1,2,4,7,2,1,2,1,1,1,2,1,14,...] 1697 0.78343051071213440705926438652697546
1.29128 59970 62663 54040[Mw 73] Sophomore's dream2
J.Bernoulli[75]
I2 011xxdx=n=11nn=111+122+133+144+
Sum[n=1 to ] 
 {1/(n^n)}
ਫਰਮਾ:OEIS2C [1;3,2,3,4,3,1,2,1,1,6,7,2,5,3,1,2,1,8,1,2,4,...] 1697 1.29128599706266354040728259059560054
0.70523 01717 91800 96514[Mw 74] Primorial constant
Sum of the product of inverse of primes [76]
P# n=11pn#=12+16+130+1210+...=k=1n=1k1pnpn:prime
Sum[k=1 to ] 
 (prod[n=1 to k] 
 {1/prime(n)})
I ਫਰਮਾ:OEIS2C [0;1,2,2,1,1,4,1,2,1,1,6,13,1,4,1,16,6,1,1,4,...] 0.70523017179180096514743168288824851
0.14758 36176 50433 27417[Mw 75] Plouffe's gamma constant[77] C 1πarctan12=1πn=0(1)n(22n+1)(2n+1)
=1π(121323+15251727+)
Arctan(1/2)/pi
T ਫਰਮਾ:OEIS2C [0;6,1,3,2,5,1,6,5,3,1,1,2,1,1,2,3,1,2,3,2,2,...] 0.14758361765043327417540107622474052
0.15915 49430 91895 33576[Mw 76] Plouffe's A constant[78]


A 12π
1/(2 pi)
T ਫਰਮਾ:OEIS2C [0;6,3,1,1,7,2,146,3,6,1,1,2,7,5,5,1,4,1,2,42,...] 0.15915494309189533576888376337251436
0.29156 09040 30818 78013[Mw 77] Dimer constant 2D,
Domino tiling[79][80]
Cπ

C=Catalan

ππcosh1(cos(t)+32)4πdt
N[int[-pi to pi]
{arccosh(sqrt(
cos(t)+3)/sqrt(2))
/(4*Pi)dt}]
ਫਰਮਾ:OEIS2C [0;3,2,3,16,8,10,3,1,1,2,1,3,1,2,13,1,1,4,1,5,...] 0.29156090403081878013838445646839491
0.49801 56681 18356 04271

0.15494 98283 01810 68512 i

Factorial(i)[81] i! Γ(1+i)=iΓ(i)=0tietdt
Integral_0^ 
 t^i/e^t dt
C ਫਰਮਾ:OEIS2C
ਫਰਮਾ:OEIS2C
[0;6,2,4,1,8,1,46,2,2,3,5,1,10,7,5,1,7,2,...]
- [0;2,125,2,18,1,2,1,1,19,1,1,1,2,3,34,...] i
0.49801566811835604271369111746219809
- 0.15494982830181068512495513048388 i
2.09455 14815 42326 59148[Mw 78] Wallis Constant W 451929183+45+1929183
(((45-sqrt(1929)) 
 /18))^(1/3)+ 
 (((45+sqrt(1929)) 
 /18))^(1/3)
A ਫਰਮਾ:OEIS2C [2;10,1,1,2,1,3,1,1,12,3,5,1,1,2,1,6,1,11,4,...] 1616
to
1703
2.09455148154232659148238654057930296
0.72364 84022 98200 00940[Mw 79] Sarnak constant Csa p>2(1p+2p3)
N[prod[k=2 to ] 
 {1-(prime(k)+2) 
 /(prime(k)^3)}]
T ? ਫਰਮਾ:OEIS2C [0;1,2,1,1,1,1,1,1,1,4,4,1,1,1,1,1,1,1,8,2,1,1,...] 0.72364840229820000940884914980912759
0.63212 05588 28557 67840[Mw 80] Time constant[82] τ limn1!nn!=limnP(n)=01exdx=11e=

n=1(1)n+1n!=11!12!+13!14!+15!16!+

lim_(n->) (1- !n/n!) 
 !n=subfactorial
T ਫਰਮਾ:OEIS2C [0;1,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [0;1,ਫਰਮਾ:Overline], n∈ℕ
0.63212055882855767840447622983853913
1.04633 50667 70503 18098 Minkowski-Siegel mass constant[83] F1 n=1n!2πn(ne)n1+1n12
N[prod[n=1 to ] 
 n! /(sqrt(2*Pi*n) 
 *(n/e)^n *(1+1/n) 
 ^(1/12))]
ਫਰਮਾ:OEIS2C [1;21,1,1,2,1,1,4,2,1,5,7,2,1,20,1,1,1134,3,..] 1867
1885
1935
1.04633506677050318098095065697776037
5.24411 51085 84239 62092[Mw 81] Lemniscate Constant[84]
2ϖ [Γ(14)]22π=401dx(1x2)(2x2)
Gamma[ 1/4 ]^2 
 /Sqrt[ 2 Pi ]
ਫਰਮਾ:OEIS2C [5;4,10,2,1,2,3,29,4,1,2,1,2,1,2,1,4,9,1,4,1,2,...] 1718 5.24411510858423962092967917978223883
0.66170 71822 67176 23515[Mw 82] Robbins constant[85] Δ(3) 4+172637π105+ln(1+2)5+2ln(2+3)5
(4+17*2^(1/2)-6 
 *3^(1/2)+21*ln(1+ 
 2^(1/2))+42*ln(2+ 
 3^(1/2))-7*Pi)/105
ਫਰਮਾ:OEIS2C [0;1,1,1,21,1,2,1,4,10,1,2,2,1,3,11,1,331,1,4,...] 1978 0.66170718226717623515583113324841358
1.30357 72690 34296 39125[Mw 83] Conway constant[86] λ x71 x692x68x67+2x66+2x65+x64x63x62x61x60x59+2x58+5x57+3x562x5510x543x532x52+6x51+6x50+x49+9x483x477x468x458x44+10x43+6x42+8x415x4012x39+7x387x37+7x36+x353x34+10x33+x326x312x3010x293x28+2x27+9x263x25+14x248x23 7x21+9x20+3x194x1810x177x16+12x15+7x14+2x1312x124x112x10+5x9+x7 7x6+7x54x4+12x36x2+3x6 = 0 A ਫਰਮਾ:OEIS2C [1;3,3,2,2,54,5,2,1,16,1,30,1,1,1,2,2,1,14,1,...] 1987 1.30357726903429639125709911215255189
1.18656 91104 15625 45282[Mw 84] Khinchin–Lévy constant[87]


β π212ln2
pi^2 /(12 ln 2)
ਫਰਮਾ:OEIS2C [1;5,2,1,3,1,1,28,18,16,3,2,6,2,6,1,1,5,5,9,...] 1935 1.18656911041562545282172297594723712
0.83564 88482 64721 05333 Baker constant[88] β3 01dt1+t3=n=0(1)n3n+1=13(ln2+π3)
Sum[n=0 to ] 
 {((-1)^(n))/(3n+1)}
ਫਰਮਾ:OEIS2C [0;1,5,11,1,4,1,6,1,4,1,1,1,2,1,3,2,2,2,2,1,3,...] 0.83564884826472105333710345970011076
23.10344 79094 20541 6160[Mw 85] Kempner Serie(0)[89] K0 1+12+13++19+111++119+121+

+199+1111++1119+1121+

(Excluding all denominators containing 0.)

1+1/2+1/3+1/4+1/5
+1/6+1/7+1/8+1/9
+1/11+1/12+1/13
+1/14+1/15+...
ਫਰਮਾ:OEIS2C [23;9,1,2,3244,1,1,5,1,2,2,8,3,1,1,6,1,84,1,...] 23.1034479094205416160340540433255981
0.98943 12738 31146 95174[Mw 86] Lebesgue constant[90] C1 limn(Ln4π2ln(2n+1))=4π2(k=12lnk4k21Γ(12)Γ(12))
4/pi^2*[(2 
 Sum[k=1 to ] 
 {ln(k)/(4*k^2-1)}) 
 -poligamma(1/2)]
ਫਰਮਾ:OEIS2C [0;1,93,1,1,1,1,1,1,1,7,1,12,2,15,1,2,7,2,1,5,...] ? 0.98943127383114695174164880901886671
0.19452 80494 65325 11361[Mw 87] 2nd du Bois-Reymond constant[91] C2 e272=0|ddt(sintt)n|dt1
(e^2-7)/2
T ਫਰਮਾ:OEIS2C [0;5,7,9,11,13,15,17,19,21,23,25,27,29,31,...]
= [0;ਫਰਮਾ:Overline], p∈ℕ
0.19452804946532511361521373028750390
0.78853 05659 11508 96106[Mw 88] Lüroth constant[92]
CL n=2ln(nn1)n
Sum[n=2 to ] 
 log(n/(n-1))/n
ਫਰਮਾ:OEIS2C [0;1,3,1,2,1,2,4,1,127,1,2,2,1,3,8,1,1,2,1,16,...] 0.78853056591150896106027632216944432
1.18745 23511 26501 05459[Mw 89] Foias constant α[93]


Fα xn+1=(1+1xn)n for n=1,2,3,

Foias constant is the unique real number such that if x1 = α then the sequence diverges to ∞. When x1 = α, limnxnlognn=1

ਫਰਮਾ:OEIS2C [1;5,2,1,81,3,2,2,1,1,1,1,1,6,1,1,3,1,1,4,3,2,...] 2000 1.18745235112650105459548015839651935
2.29316 62874 11861 03150[Mw 90] Foias constant β Fβ xx+1=(x+1)x
x^(x+1) 
 = (x+1)^x
ਫਰਮਾ:OEIS2C [2;3,2,2,3,4,2,3,2,130,1,1,1,1,1,6,3,2,1,15,1,...] 2000 2.29316628741186103150802829125080586
0.82246 70334 24113 21823[Mw 91] Nielsen-Ramanujan constant[94]


ζ(2)2 π212=n=1(1)n+1n2=112122+132142+152
Sum[n=1 to ]
{((-1)^(n+1))/n^2}
T ਫਰਮਾ:OEIS2C [0;1,4,1,1,1,2,1,1,1,1,3,2,2,4,1,1,1,1,1,1,4...] 1909 0.82246703342411321823620758332301259
0.69314 71805 59945 30941[Mw 92] Natural logarithm of 2[95] Ln(2) n=11n2n=n=1(1)n+1n=1112+1314+
Sum[n=1 to ]
{(-1)^(n+1)/n}
T ਫਰਮਾ:OEIS2C [0;1,2,3,1,6,3,1,1,2,1,1,1,1,3,10,1,1,1,2,1,1,...] 1550
to
1617
0.69314718055994530941723212145817657
0.47494 93799 87920 65033[Mw 93] Weierstrass constant[96]


σ(12) eπ8π423/4(14!)2
(E^(Pi/8) Sqrt[Pi])
 /(4 2^(3/4) (1/4)!^2)
ਫਰਮਾ:OEIS2C [0;2,9,2,11,1,6,1,4,6,3,19,9,217,1,2,4,8,6...] 1872 ? 0.47494937998792065033250463632798297
0.57721 56649 01532 86060[Mw 94] Euler–Mascheroni constant γ n=1k=0(1)k2n+k=n=1(1nln(1+1n))

=01ln(ln1x)dx=Γ(1)=Ψ(1)

sum[n=1 to ]
|sum[k=0 to ]
{((-1)^k)/(2^n+k)}
ਫਰਮਾ:OEIS2C [0;1,1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,...] 1735 0.57721566490153286060651209008240243
1.38135 64445 18497 79337 Beta, Kneser-Mahler polynomial constant[97] β e2π0π3ttant dt=e1313ln1+e2πitdt
e^((PolyGamma(1,4/3) 
 - PolyGamma(1,2/3) 
 +9)/(4*sqrt(3)*Pi))
ਫਰਮਾ:OEIS2C [1;2,1,1,1,1,1,4,1,139,2,1,3,5,16,2,1,1,7,2,1,...] 1963 1.38135644451849779337146695685062412
1.35845 62741 82988 43520[Mw 95] Golden Spiral c φ2π=(1+52)2π
GoldenRatio^(2/pi)
ਫਰਮਾ:OEIS2C [1;2,1,3,1,3,10,8,1,1,8,1,15,6,1,3,1,1,2,3,1,1,...] 1.35845627418298843520618060050187945
0.57595 99688 92945 43964[Mw 96] Stephens constant[98] CS n=1(1pp31)
Prod[n=1 to ] 
 {1-hprime(n) 
 /(hprime(n)^3-1)}
T ? ਫਰਮਾ:OEIS2C [0;1,1,2,1,3,1,3,1,2,1,77,2,1,1,10,2,1,1,1,7,...] ? 0.57595996889294543964316337549249669
0.73908 51332 15160 64165[Mw 97] Dottie number[99] d limxcos[x](c)=limxcos(cos(cos((cos(c)))))x
cos(c)=c
T ਫਰਮਾ:OEIS2C [0;1,2,1,4,1,40,1,9,4,2,1,15,2,12,1,21,1,17,...] ? 0.73908513321516064165531208767387340
0.67823 44919 17391 97803[Mw 98] Taniguchi constant[100] CT n=1(13pn3+2pn4+1pn51pn6)
pn=prime
Prod[n=1 to ] {1 
 -3/ithprime(n)^3 
 +2/ithprime(n)^4 
 +1/ithprime(n)^5 
 -1/ithprime(n)^6}
T ? ਫਰਮਾ:OEIS2C [0;1,2,9,3,1,2,9,11,1,13,2,15,1,1,1,2,4,1,1,1,...] ? 0.67823449191739197803553827948289481
1.85407 46773 01371 91843[Mw 99] Gauss' Lemniscate constant[101] L/2 0dx1+x4=14πΓ(14)2=4(14!)2π
Γ()= Gamma function
pi^(3/2)/(2 Gamma(3/4)^2)
ਫਰਮਾ:OEIS2C [1;1,5,1,5,1,3,1,6,2,1,4,16,3,112,2,1,1,18,1,...] 1.85407467730137191843385034719526005
1.75874 36279 51184 82469 Infinite product constant, with Alladi-Grinstead[102] Pr1 n=2(1+1n)1n
Prod[n=2 to inf] 
{(1+1/n)^(1/n)}
ਫਰਮਾ:OEIS2C [1;1,3,6,1,8,1,4,3,1,4,1,1,1,6,5,2,40,1,387,2,...] 1977 1.75874362795118482469989684865589317
1.86002 50792 21190 30718 Spiral of Theodorus[103] n=11n3+n=n=11n(n+1)
Sum[n=1 to ∞] 
 {1/(n^(3/2) 
 +n^(1/2))}
ਫਰਮਾ:OEIS2C [1;1,6,6,1,15,11,5,1,1,1,1,5,3,3,3,2,1,1,2,19,...] -460
to
-399
1.86002507922119030718069591571714332
2.79128 78474 77920 00329 Nested radical S5 S5 21+12=5+5+5+5+5+

=1+55555

(sqrt(21)+1)/2
A A222134 [2;1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,...]
[2;ਫਰਮਾ:Overline]
? 2.79128784747792000329402359686400424
0.70710 67811 86547 52440
+0.70710 67811 86547 524 i[Mw 100]
Square root of i[104] i 14=1+i2=eiπ4=cos(π4)+isin(π4)
(1+i)/(sqrt 2)
C A ਫਰਮਾ:OEIS2C [0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..]
= [0;1,ਫਰਮਾ:Overline,...]
[0;1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,..] i
= [0;1,ਫਰਮਾ:Overline,...] i
? 0.70710678118654752440084436210484903
+ 0.70710678118654752440084436210484 i
0.80939 40205 40639 13071[Mw 101] Alladi–Grinstead constant[105] 𝒜AG e1+k=2n=11nkn+1=e1k=21kln(11k)
e^{(sum[k=2 to ∞] 
 |sum[n=1 to ∞] 
 {1/(n k^(n+1))})-1}
ਫਰਮਾ:OEIS2C [0;1,4,4,17,4,3,2,5,3,1,1,1,1,6,1,1,2,1,22,...] 1977 0.80939402054063913071793188059409131
2.58498 17595 79253 21706[Mw 102] Sierpiński's constant[106] K π(2γ+ln4π3Γ(14)4)=π(2γ+4lnΓ(34)lnπ)

=π(2ln2+3lnπ+2γ4lnΓ(14))

-Pi Log[Pi]+2 Pi 
 EulerGamma
+4 Pi Log
[Gamma[3/4]]
ਫਰਮਾ:OEIS2C [2;1,1,2,2,3,1,3,1,9,2,8,4,1,13,3,1,15,18,1,...] 1907 2.58498175957925321706589358738317116
1.73245 47146 00633 47358[Ow 4] Reciprocal of the Euler–Mascheroni constant 1γ (01log(log1x)dx)1=n=1(1)n(1+γ)n
1/Integrate_ 
 {x=0 to 1} 
 -log(log(1/x))
ਫਰਮਾ:OEIS2C [1;1,2,1,2,1,4,3,13,5,1,1,8,1,2,4,1,1,40,1,11,...] 1.73245471460063347358302531586082968
1.43599 11241 76917 43235[Mw 103] Lebesgue constant (interpolation)[107][108] L1 i=0jinxxixjxi=1π0πsin3t2sint2dt=13+23π
1/3 + 2*sqrt(3)/pi
T ਫਰਮਾ:OEIS2C [1;2,3,2,2,6,1,1,1,1,4,1,7,1,1,1,2,1,3,1,2,1,1,...] 1902 ~ 1.43599112417691743235598632995927221
3.24697 96037 17467 06105[Mw 104] Silver root
Tutte–Beraha constant[109]
ς 2+2cos2π7=2+2+7+77+77+3331+7+77+77+333
2+2 cos(2Pi/7)
A ਫਰਮਾ:OEIS2C [3;4,20,2,3,1,6,10,5,2,2,1,2,2,1,18,1,1,3,2,...] 3.24697960371746706105000976800847962
1.94359 64368 20759 20505[Mw 105] Euler Totient
constant
[110][111]
ET p(1+1p(p1))p= primes=ζ(2)ζ(3)ζ(6)=315ζ(3)2π4
zeta(2)*zeta(3)
/zeta(6)
ਫਰਮਾ:OEIS2C [1;1,16,1,2,1,2,3,1,1,3,2,1,8,1,1,1,1,1,1,1,32,...] 1750 1.94359643682075920505707036257476343
1.49534 87812 21220 54191 Fourth root of five[112] 54 5555555555
(5(5(5(5(5(5(5) 
 ^1/5)^1/5)^1/5) 
 ^1/5)^1/5)^1/5) 
 ^1/5 ...
A ਫਰਮਾ:OEIS2C [1;2,53,4,96,2,1,6,2,2,2,6,1,4,1,49,17,2,3,2,...] 1.49534878122122054191189899414091339
0.87228 40410 65627 97617[Mw 106] Area of Ford circle[113] ACF q1(p,q)=11p<qπ(12q2)2=π4ζ(3)ζ(4)=452ζ(3)π3ζ()= Riemann Zeta Function
pi Zeta(3) 
/(4 Zeta(4))
[0;1,6,1,4,1,7,5,36,3,29,1,1,10,3,2,8,1,1,1,3,...] 0.87228404106562797617519753217122587
1.08232 32337 11138 19151[Mw 107] Zeta(4)[114]


ζ(4) π490=n=11n4=114+124+134+144+154+...
Sum[n=1 to ∞]
{1/n^4}
T ਫਰਮਾ:OEIS2C [1;12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,...] ? 1.08232323371113819151600369654116790
1.56155 28128 08830 27491 Triangular root of 2.[115] R2 1712=4+4+4+4+4+4+1

=444444

(sqrt(17)-1)/2
A ਫਰਮਾ:OEIS2C [1;1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,1,3,1,...]
[1;ਫਰਮਾ:Overline]
1.56155281280883027491070492798703851
9.86960 44010 89358 61883 Pi Squared


π2 6ζ(2)=6n=11n2=612+622+632+642+
6 Sum[n=1 to ∞]
{1/n^2}
T A002388 [9;1,6,1,2,47,1,8,1,1,2,2,1,1,8,3,1,10,5,1,3,...] 9.86960440108935861883449099987615114
1.32471 79572 44746 02596[Mw 108] Plastic number[116] ρ 1+1+1+333=12+231083+12231083
(1+(1+(1+(1+(1+(1)
^(1/3))^(1/3))^(1/3))
^(1/3))^(1/3))^(1/3)
A ਫਰਮਾ:OEIS2C [1;3,12,1,1,3,2,3,2,4,2,141,80,2,5,1,2,8,2,...] 1929 1.32471795724474602596090885447809734
2.37313 82208 31250 90564 Lévy 2 constant[117]


2lnγ π26ln(2)
Pi^(2)/(6*ln(2))
T ਫਰਮਾ:OEIS2C [2;2,1,2,8,57,9,32,1,1,2,1,2,1,2,1,2,1,3,2,...] 1936 2.37313822083125090564344595189447424
0.85073 61882 01867 26036[Mw 109] Regular paperfolding sequence[118][119] Pf n=082n22n+21=n=0122n1122n+2
N[Sum[n=0 to ∞]
 {8^2^n/(2^2^ 
 (n+2)-1)},37]
ਫਰਮਾ:OEIS2C [0;1,5,1,2,3,21,1,4,107,7,5,2,1,2,1,1,2,1,6,...] 0.85073618820186726036779776053206660
1.15636 26843 32269 71685[Mw 110] Cubic recurrence constant[120]{{.}}[121]


σ3 n=1n3n=123333=11/321/931/27
prod[n=1 to ∞]
{n ^(1/3)^n}
ਫਰਮਾ:OEIS2C [1;6,2,1,1,8,13,1,3,2,2,6,2,1,2,1,1,1,10,33,...] 1.15636268433226971685337032288736935
1.26185 95071 42914 87419[Mw 111] Fractal dimension of the Koch snowflake[122] ਤਸਵੀਰ:Koch snowflake05.ogv Ck log4log3
log(4)/log(3)
T A100831 [1;3,1,4,1,1,11,1,46,1,5,112,1,1,1,1,1,3,1,7,...] 1.26185950714291487419905422868552171
6.58088 59910 17920 97085 Froda constant[123]

2e 2e
2^e
[6;1,1,2,1,1,2,3,1,14,11,4,3,1,1,7,5,5,2,7,...] 6.58088599101792097085154240388648649
0.26149 72128 47642 78375[Mw 112] Meissel-Mertens constant[124] M limn(pn1pln(ln(n)))=γ+p(ln(11p)+1p)γ:Euler constant,p:prime
gamma+ 
 Sum[n=1 to ∞] 
 {ln(1-1/prime(n)) 
 +1/prime(n)}
T ? ਫਰਮਾ:OEIS2C [0;3,1,4,1,2,5,2,1,1,1,1,13,4,2,4,2,1,33,296,...] 1866
&
1873
0.26149721284764278375542683860869585
4.81047 73809 65351 65547 John constant[125] γ ii=ii=(ii)1=(((i)i)i)i=eπ2=n=0πnn!
e^(π/2)
T ਫਰਮਾ:OEIS2C [4;1,4,3,1,1,1,1,1,1,1,1,7,1,20,1,3,6,10,3,2,...] 4.81047738096535165547303566670383313
-0.5
± 0.86602 54037 84438 64676 i
Cube Root of 1[126] 13 {  112+32i1232i.
1, 
 E^(2i pi/3), 
 E^(-2i pi/3)
C A ਫਰਮਾ:OEIS2C - [0,5]
± [0;1,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,6,2,...] i
- [0,5]
± [0; 1, ਫਰਮਾ:Overline] i
- 0.5
± 0.8660254037844386467637231707529 i
0.11000 10000 00000 00000 0001 [Mw 113] Liouville number[127]


£Li n=1110n!=1101!+1102!+1103!+1104!+
Sum[n=1 to ∞] 
 {10^(-n!)}
T ਫਰਮਾ:OEIS2C [1;9,1,999,10,9999999999999,1,9,999,1,9] 0.11000100000000000000000100...
0.06598 80358 45312 53707[Mw 114] Lower limit of Tetration[128] ee (1e)e
1/(e^e)
ਫਰਮਾ:OEIS2C [0;15,6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,...] 0.06598803584531253707679018759684642
1.83928 67552 14161 13255 Tribonacci constant[129] ϕ3 1+19+3333+1933333=1+(12+12+12+...333)1
(1/3)*(1+(19+3 
 *sqrt(33))^(1/3) 
 +(19-3 
 *sqrt(33))^(1/3))
A ਫਰਮਾ:OEIS2C [1;1,5,4,2,305,1,8,2,1,4,6,14,3,1,13,5,1,7,...] 1.83928675521416113255185256465328660
0.36651 29205 81664 32701 Median of the Gumbel distribution[130] ll2 ln(ln(2))
-ln(ln(2))
A074785 [0;2,1,2,1,2,6,1,6,6,2,2,2,1,12,1,8,1,1,3,1,...] 0.36651292058166432701243915823266947
36.46215 96072 07911 7709 Pi^pi[131]

ππ ππ
pi^pi
ਫਰਮਾ:OEIS2C [36;2,6,9,2,1,2,5,1,1,6,2,1,291,1,38,50,1,2,...] 36.4621596072079117709908260226921236
0.53964 54911 90413 18711 Ioachimescu constant[132] 2+ζ(12) 2(1+2)n=1(1)n+1n=γ+n=1(1)2nγn2nn!
γ + N[
sum[n=1 to ∞] 
 {((-1)^(2n) 
 gamma_n)
/(2^n n!)}]
2-
ਫਰਮਾ:OEIS2C
[0;1,1,5,1,4,6,1,1,2,6,1,1,2,1,1,1,37,3,2,1,...] 0.53964549119041318711050084748470198
15.15426 22414 79264 1897[Mw 115] Exponential reiterated constant[133] ee n=0enn!=limn(1+nn)nn(1+n)1+n
Sum[n=0 to ∞]
{(e^n)/n!}
ਫਰਮਾ:OEIS2C [15;6,2,13,1,3,6,2,1,1,5,1,1,1,9,4,1,1,1,6,7,...] 15.1542622414792641897604302726299119
0.64624 54398 94813 30426[Mw 116] Masser–Gramain constant[134] C γβ(1)+β(1)=π(lnΓ(14)+34π+12ln2+12γ)

=π(ln(14!)+34lnπ32ln2+12γ) γ=Euler–Mascheroni constant=0.5772156649 β()=Beta function,Γ()=Gamma function

Pi/4*(2*Gamma 
+ 2*Log[2]
 + 3*Log[Pi]- 4 
 Log[Gamma[1/4]])
ਫਰਮਾ:OEIS2C [0;1,1,1,4,1,3,2,3,9,1,33,1,4,3,3,5,3,1,3,4,...] 0.64624543989481330426647339684579279
1.11072 07345 39591 56175[Mw 117] The ratio of a square and circle circumscribed[135] π22 n=1(1)n122n+1=11+131517+19+111
sum[n=1 to ∞]
{(-1)^(floor(
(n-1)/2))
/(2n-1)}
T ਫਰਮਾ:OEIS2C [1;9,31,1,1,17,2,3,3,2,3,1,1,2,2,1,4,9,1,3,...] 1.11072073453959156175397024751517342
1.45607 49485 82689 67139[Mw 118] Backhouse's constant[136] B limk|qk+1qk|where:Q(x)=1P(x)=k=1qkxk

P(x)=k=1pkxkpk prime=1+2x+3x2+5x3+

1/(FindRoot[0 == 1 + 
Sum[x^n Prime[n], 
{n, 10000}], {x, {1}})
ਫਰਮਾ:OEIS2C [1;2,5,5,4,1,1,18,1,1,1,1,1,2,13,3,1,2,4,16,...] 1995 1.45607494858268967139959535111654355
1.85193 70519 82466 17036[Mw 119] Gibbs constant[137] Si(π)
Sin integral
0πsinttdt=n=1(1)n1π2n1(2n1)(2n1)!

=ππ333!+π555!π777!+

SinIntegral[Pi]
ਫਰਮਾ:OEIS2C [1;1,5,1,3,15,1,5,3,2,7,2,1,62,1,3,110,1,39,...] 1.85193705198246617036105337015799136
0.23571 11317 19232 93137[Mw 120] Copeland–Erdős constant[138] 𝒞CE n=1pn10n+k=1nlog10pk
sum[n=1 to ∞] 
 {prime(n) /(n+(10^ 
 sum[k=1 to n]{floor 
 (log_10 prime(k))}))}
I ਫਰਮਾ:OEIS2C [0;4,4,8,16,18,5,1,1,1,1,7,1,1,6,2,9,58,1,3,...] 0.23571113171923293137414347535961677
1.52362 70862 02492 10627[Mw 121] Fractal dimension of the boundary of the dragon curve[139] Cd log(1+736873+73+68733)log(2)
(log((1+(73-6 sqrt(87))^1/3+ 
(73+6 sqrt(87))^1/3)/3))/ 
log(2)))
T [1;1,1,10,12,2,1,149,1,1,1,3,11,1,3,17,4,1,...] 1.52362708620249210627768393595421662
1.78221 39781 91369 11177[Mw 122] Grothendieck constant[140]


KR π2log(1+2)
pi/(2 log(1+sqrt(2)))
ਫਰਮਾ:OEIS2C [1;1,3,1,1,2,4,2,1,1,17,1,12,4,3,5,10,1,1,3,...] 1.78221397819136911177441345297254934
1.58496 25007 21156 18145[Mw 123] Hausdorff dimension, Sierpinski triangle[141] log23 log3log2=n=0122n+1(2n+1)n=0132n+1(2n+1)=12+124+1160+13+181+11215+
(Sum[n=0 to ∞] {1/
(2^(2n+1) (2n+1))})/ 
 (Sum[n=0 to ∞] {1/
(3^(2n+1) (2n+1))})
T ਫਰਮਾ:OEIS2C [1;1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,...] 1.58496250072115618145373894394781651
1.30637 78838 63080 69046[Mw 124] Mills' constant[142] θ θ3n primes
Nest[ NextPrime[#^3] &, 2, 7]^(1/3^8)
ਫਰਮਾ:OEIS2C [1;3,3,1,3,1,2,1,2,1,4,2,35,21,1,4,4,1,1,3,2,...] 1947 1.30637788386308069046861449260260571
2.02988 32128 19307 25004[Mw 125] Figure eight knot hyperbolic volume[143] V8 23n=11n(2nn)k=n2n11k=60π/3log(12sint)dt=

39n=0(1)n27n{18(6n+1)218(6n+2)224(6n+3)26(6n+4)2+2(6n+5)2}

6 integral[0 to pi/3]
 {log(1/(2 sin (n)))}
ਫਰਮਾ:OEIS2C [2;33,2,6,2,1,2,2,5,1,1,7,1,1,1,113,1,4,5,1,...] 2.02988321281930725004240510854904057
262 53741 26407 68743
.99999 99999 99250 073[Mw 126]
Hermite–Ramanujan constant[144] R eπ163
e^(π sqrt(163))
T ਫਰਮਾ:OEIS2C [262537412640768743;1,1333462407511,1,8,1,1,5,...] 1859 262537412640768743.999999999999250073
1.74540 56624 07346 86349[Mw 127] Khinchin harmonic mean[145] K1 log2n=11nlog(1+1n(n+2))=limnn1a1+1a2++1an

a1 ... an are elements of a continued fraction [a0; a1, a2, ..., an]

(log 2)/
(sum[n=1 to ∞] 
{1/n log(1+
1/(n(n+2))}
ਫਰਮਾ:OEIS2C [1;1,2,1,12,1,5,1,5,13,2,13,2,1,9,1,6,1,3,1,...] 1.74540566240734686349459630968366106
1.64872 12707 00128 14684[Ow 5] Square root of the number e[146]


e n=012nn!=n=01(2n)!!=11+12+18+148+
Sum[n=0 to ∞]
{1/(2^n n!)}
T ਫਰਮਾ:OEIS2C [1;1,1,1,5,1,1,9,1,1,13,1,1,17,1,1,21,1,1,...]
= [1;1,ਫਰਮਾ:Overline], p∈ℕ
1.64872127070012814684865078781416357
1.01734 30619 84449 13971[Mw 128] Zeta(6)[147] ζ(6) π6945=n=111pn6pn: prime=112611361156
Prod[n=1 to ∞]
{1/(1-ithprime
(n)^-6)}
T ਫਰਮਾ:OEIS2C [1;57,1,1,1,15,1,6,3,61,1,5,3,1,6,1,3,3,6,1,...] 1.01734306198444913971451792979092052
0.10841 01512 23111 36151[Mw 129] Trott constant[148] T1 [1,0,8,4,1,0,1,5,1,2,2,3,1,1,1,3,6,...]

11+10+18+14+11+10+1/

ਫਰਮਾ:OEIS2C [0;9,4,2,5,1,2,2,3,1,1,1,3,6,1,5,1,1,2,...] 0.10841015122311136151129081140641509
0.00787 49969 97812 3844[Mw 130] Chaitin constant[149]
Ω pP2|p|

ਫਰਮਾ:See also

T ਫਰਮਾ:OEIS2C [0; 126, 1, 62, 5, 5, 3, 3, 21, 1, 4, 1] 1975 0.0078749969978123844
0.83462 68416 74073 18628[Mw 131] Gauss constant[150] G 1agm(1,2)=42(14!)2π3/2=2π01dx1x4

AGM = Arithmetic–geometric mean

(4 sqrt(2)((1/4)!)^2)
/pi^(3/2)
T ਫਰਮਾ:OEIS2C [0;1,5,21,3,4,14,1,1,1,1,1,3,1,15,1,3,7,1,...] 0.83462684167407318628142973279904680
1.45136 92348 83381 05028[Mw 132] Ramanujan–Soldner constant[151][152] μ li(x)=0xdtlnt=0...... li = Logarithmic integral

li(x)=Ei(lnx)........ Ei = Exponential integral

FindRoot[li(x) = 0]
I ਫਰਮਾ:OEIS2C [1;2,4,1,1,1,3,1,1,1,2,47,2,4,1,12,1,1,2,2,1,...] 1792
to
1809
1.45136923488338105028396848589202744
0.64341 05462 88338 02618[Mw 133] Cahen's constant[153] ξ2 k=1(1)ksk1=1112+16142+11806±

Where sk is the kth term of Sylvester's sequence 2, 3, 7, 43, 1807, ...
Defined as: S0=2,Sk=1+n=0k1Sn fork>0

T ਫਰਮਾ:OEIS2C [0; 1, 1, 1, 4, 9, 196, 16641, 639988804, ...] 1891 0.64341054628833802618225430775756476
1.41421 35623 73095 04880[Mw 134] Square root of 2, Pythagoras constant.[154] 2 n=1(1+(1)n+12n1)=(1+11)(113)(1+15)
prod[n=1 to ∞] 
 {1+(-1)^(n+1) 
 /(2n-1)}
A ਫਰਮਾ:OEIS2C [1;2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,...]
= [1;ਫਰਮਾ:Overline...]
1.41421356237309504880168872420969808
1.77245 38509 05516 02729[Mw 135] Carlson–Levin constant[117] Γ(12) π=(12)!=1ex2dx=011lnxdx
sqrt (pi)
T ਫਰਮਾ:OEIS2C [1;1,3,2,1,1,6,1,28,13,1,1,2,18,1,1,1,83,1,...] 1.77245385090551602729816748334114518
1.05946 30943 59295 26456[Ow 6] Musical interval between each half tone[155][156]

212 2x120123456789101112KeyC1C#DD#EFF#GG#AA#BC2(A = 440 Hz)
2^(1/12)
A ਫਰਮਾ:OEIS2C [1;16,1,4,2,7,1,1,2,2,7,4,1,2,1,60,1,3,1,2,...] 1.05946309435929526456182529494634170
1.01494 16064 09653 62502[Mw 136] Gieseking constant[157] πlnβ 334(1n=01(3n+2)2+n=11(3n+1)2)=

334(1122+142152+172182+1102±).

sqrt(3)*3/4 *(1
-Sum[n=0 to ∞]
{1/((3n+2)^2)}
+Sum[n=1 to ∞]
{1/((3n+1)^2)})
ਫਰਮਾ:OEIS2C [1;66,1,12,1,2,1,4,2,1,3,3,1,4,1,56,2,2,11,...] 1912 1.01494160640965362502120255427452028
2.62205 75542 92119 81046[Mw 137] Lemniscate constant[158] ϖ πG=42πΓ(54)2=142πΓ(14)2=42π(14!)2
4 sqrt(2/pi)
((1/4)!)^2
T ਫਰਮਾ:OEIS2C [2;1,1,1,1,1,4,1,2,5,1,1,1,14,9,2,6,2,9,4,1,...] 1798 2.62205755429211981046483958989111941
1.28242 71291 00622 63687[Mw 138] Glaisher–Kinkelin constant


A e112ζ(1)=e1812n=01n+1k=0n(1)k(nk)(k+1)2ln(k+1)
e^(1/12-zeta´{-1})
T ? ਫਰਮਾ:OEIS2C [1;3,1,1,5,1,1,1,3,12,4,1,271,1,1,2,7,1,35,...] 1.28242712910062263687534256886979172
-4.22745 35333 76265 408[Mw 139] Digamma (1/4)[159] ψ(14) γπ23ln2=γ+n=0(1n+11n+14)
-EulerGamma 
-\pi/2 -3 log 2
ਫਰਮਾ:OEIS2C -[4;4,2,1,1,10,1,5,9,11,1,22,1,1,14,1,2,1,4,...] -4.2274535333762654080895301460966835
0.28674 74284 34478 73410[Mw 140] Strongly Carefree constant[160]



K2 n=1(13pn2pn3)pn: prime=6π2n=1(11pn(pn+1))pn: prime
N[ prod[k=1 to ∞] 
 {1-(3*prime(k)-2) 
 /(prime(k)^3)}]
ਫਰਮਾ:OEIS2C [0;3,2,19,3,12,1,5,1,5,1,5,2,1,1,1,1,1,3,7,...] 0.28674742843447873410789271278983845
3.62560 99082 21908 31193[Mw 141] Gamma(1/4)[161] Γ(14) 4(14)!=(34)!
4(1/4)!
T ਫਰਮਾ:OEIS2C [3;1,1,1,2,25,4,9,1,1,8,4,1,6,1,1,19,1,1,4,1,...] 1729 3.62560990822190831193068515586767200
1.66168 79496 33594 12129[Mw 142] Somos' quadratic recurrence constant[162] σ n=1n1/2n=123=11/221/431/8
prod[n=1 to ∞]
{n ^(1/2)^n}
T ? ਫਰਮਾ:OEIS2C [1;1,1,1,21,1,1,1,6,4,2,1,1,2,1,3,1,13,13,...] 1.66168794963359412129581892274995074
0.95531 66181 245092 78163 Magic angle[163] θm arctan(2)=arccos(13)54.7356
arctan(sqrt(2))
T ਫਰਮਾ:OEIS2C [0;1,21,2,1,1,1,2,1,2,2,4,1,2,9,1,2,1,1,1,3,...] 0.95531661812450927816385710251575775
1.78107 24179 90197 98523[Mw 143] Exp.gamma,
Barnes G-function[164]
eγ n=1e1n1+1n=n=0(k=0n(k+1)(1)k+1(nk))1n+1=

(21)1/2(2213)1/3(234133)1/4(24441365)1/5

Prod[n=1 to ∞]
{e^(1/n)}
/{1 + 1/n}
ਫਰਮਾ:OEIS2C [1;1,3,1,1,3,5,4,1,1,2,2,1,7,9,1,16,1,1,1,2,...] 1.78107241799019798523650410310717954
0.74759 79202 53411 43517[Mw 144] Rényi's Parking Constant[165] m 0exp(20x1eyydy)dx=e2γ0e2Γ(0,n)n2
[e^(-2*Gamma)] 
*।nt{n,0,∞}[ e^(- 2
*Gamma(0,n)) /n^2]
ਫਰਮਾ:OEIS2C [0;1,2,1,25,3,1,2,1,1,12,1,2,1,1,3,1,2,1,43,...] 0.74759792025341143517873094383017817
1.27323 95447 35162 68615 Ramanujan–Forsyth series[166] 4π n=0((2n3)!!(2n)!!)2=1+(12)2+(124)2+(13246)2+
Sum[n=0 to ∞] 
 {[(2n-3)!! 
 /(2n)!!]^2}
I ਫਰਮਾ:OEIS2C [1;3,1,1,1,15,2,72,1,9,1,17,1,2,1,5,1,1,10,...] 1.27323954473516268615107010698011489
1.44466 78610 09766 13365[Mw 145] Steiner number, Iterated exponential Constant[167]
ee e1e........... = Upper Limit of Tetration
e^(1/e)
T ਫਰਮਾ:OEIS2C [1;2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 1.44466786100976613365833910859643022
0.69220 06275 55346 35386[Mw 146] Minimum value of función
ƒ(x) = xx[168]
(1e)1e e1e.......... =।nverse Steiner Number
e^(-1/e)
ਫਰਮਾ:OEIS2C [0;1,2,4,55,27,1,1,16,9,3,2,8,3,2,1,1,4,1,9,...] 0.69220062755534635386542199718278976
0.34053 73295 50999 14282[Mw 147] Pólya Random walk constant[169] p(3) 1(3(2π)3ππππππdxdydz3cosxcosycosz)1

=11623π3(Γ(124)Γ(524)Γ(724)Γ(1124))1

1-16*Sqrt[2/3]*Pi^3 
/(Gamma[1/24]
*Gamma[5/24]
*Gamma[7/24]
*Gamma[11/24])
ਫਰਮਾ:OEIS2C [0;2,1,14,1,3,8,1,5,2,7,1,12,1,5,59,1,1,1,3,...] 0.34053732955099914282627318443290289
0.54325 89653 42976 70695[Mw 148] Bloch–Landau constant[170] L =Γ(13)Γ(56)Γ(16)=(23)!(1+56)!(1+16)!
gamma(1/3)
*gamma(5/6)
/gamma(1/6)
ਫਰਮਾ:OEIS2C [0;1,1,5,3,1,1,2,1,1,6,3,1,8,11,2,1,1,27,4,...] 1929 0.54325896534297670695272829530061323
0.18785 96424 62067 12024[Mw 149][Ow 7] MRB Constant, Marvin Ray Burns[171][172][173] CMRB n=1(1)n(n1/n1)=11+2233+
Sum[n=1 to ∞]
{(-1)^n (n^(1/n)-1)}
ਫਰਮਾ:OEIS2C [0;5,3,10,1,1,4,1,1,1,1,9,1,1,12,2,17,2,2,1,...] 1999 0.18785964246206712024851793405427323
1.46707 80794 33975 47289[Mw 150] Porter Constant[174] C 6ln2π2(3ln2+4γ24π2ζ(2)2)12

γ= Euler–Mascheroni Constant=0.5772156649 ζ(2)= Derivative of ζ(2)=n=2lnnn2=0.9375482543

6*ln2/pi^2(3*ln2+ 
4 EulerGamma- 
WeierstrassZeta'(2) 
*24/pi^2-2)-1/2
ਫਰਮਾ:OEIS2C [1;2,7,10,1,2,38,5,4,1,4,12,5,1,5,1,2,3,1,...] 1974 1.46707807943397547289779848470722995
4.66920 16091 02990 67185[Mw 151] Feigenbaum constant δ[175] δ limnxn+1xnxn+2xn+1x(3.8284;3.8495)

xn+1=axn(1xn)orxn+1=asin(xn)

T ਫਰਮਾ:OEIS2C [4;1,2,43,2,163,2,3,1,1,2,5,1,2,3,80,2,5,...] 1975 4.66920160910299067185320382046620161
2.50290 78750 95892 82228[Mw 152] Feigenbaum constant α[176] α limndndn+1 T ? ਫਰਮਾ:OEIS2C [2;1,1,85,2,8,1,10,16,3,8,9,2,1,40,1,2,3,...] 1979 2.50290787509589282228390287321821578
0.62432 99885 43550 87099[Mw 153] Golomb–Dickman constant[177]


λ 0f(x)x2dxPara x>2=01eLi(n)dnLi: Logarithmic integral
N[Int{n,0,1}[e^Li(n)],34]
ਫਰਮਾ:OEIS2C [0;1,1,1,1,1,22,1,2,3,1,1,11,1,1,2,22,2,6,1,...] 1930
&
1964
0.62432998854355087099293638310083724
23.14069 26327 79269 0057[Mw 154] Gelfond constant[178]


eπ (1)i=i2i=n=0πnn!=π11+π22!+π33!+
Sum[n=0 to ∞] 
 {(pi^n)/n!}
T ਫਰਮਾ:OEIS2C [23;7,9,3,1,1,591,2,9,1,2,34,1,16,1,30,1,...] 23.1406926327792690057290863679485474
7.38905 60989 30650 22723 Conic constant, Schwarzschild constant[179] e2 n=02nn!=1+2+222!+233!+244!+255!+
Sum[n=0 to ∞]
{2^n/n!}
T ਫਰਮਾ:OEIS2C [7;2,1,1,3,18,5,1,1,6,30,8,1,1,9,42,11,1,...]
= [7,2,ਫਰਮਾ:Overline], n = 3, 6, 9, etc.
7.38905609893065022723042746057500781
0.35323 63718 54995 98454[Mw 155] Hafner–Sarnak–McCurley constant (1)[180] σ k=1{1[1j=1n(1pkj)]2pk: prime}
prod[k=1 to ∞] 
{1-(1-prod[j=1 to n] 
{1-ithprime(k)^-j})^2}
ਫਰਮਾ:OEIS2C [0;2,1,4,1,10,1,8,1,4,1,2,1,2,1,2,6,1,1,1,3,...] 1993 0.35323637185499598454351655043268201
0.60792 71018 54026 62866[Mw 156] Hafner–Sarnak–McCurley constant (2)[181] 1ζ(2) 6π2=n=0(11pn2)pn: prime=(1122)(1132)(1152)
Prod{n=1 to ∞}
(1-1/ithprime(n)^2)
T ਫਰਮਾ:OEIS2C [0;1,1,1,1,4,2,4,7,1,4,2,3,4,10,1,2,1,1,1,...] 0.60792710185402662866327677925836583
0.12345 67891 01112 13141[Mw 157] Champernowne constant[182] C10 n=1k=10n110n1k10kn9j=0n110j(nj1) T ਫਰਮਾ:OEIS2C [0;8,9,1,149083,1,1,1,4,1,1,1,3,4,1,1,1,15,...] 1933 0.12345678910111213141516171819202123
0.76422 36535 89220 66299[Mw 158] Landau-Ramanujan constant[183]



K 12p3mod4(11p2)12p: prime=π4p1mod4(11p2)12p: prime T ? ਫਰਮਾ:OEIS2C [0;1,3,4,6,1,15,1,2,2,3,1,23,3,1,1,3,1,1,6,4,...] 0.76422365358922066299069873125009232
2.71828 18284 59045 23536[Mw 159] Number e, Euler's number[184] e limn(1+1n)n=n=01n!=10!+11+12!+13!+
Sum[n=0 to ∞]
{1/n!} 
(* lim_(n->∞) 
(1+1/n)^n *)
T ਫਰਮਾ:OEIS2C [2;1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,...]
= [2;ਫਰਮਾ:Overline], p∈ℕ
2.71828182845904523536028747135266250
0.36787 94411 71442 32159[Mw 160] Inverse of Number e[185]


1e n=0(1)nn!=10!11!+12!13!+14!15!+
Sum[n=2 to ∞]
{(-1)^n/n!}
T ਫਰਮਾ:OEIS2C [0;2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,...]
= [0;2,1,ਫਰਮਾ:Overline], p∈ℕ
1618 0.36787944117144232159552377016146086
0.69034 71261 14964 31946 Upper iterated exponential[186] H2n+1 limnH2n+1=(12)(13)(14)(12n+1)=2342n1
2^-3^-4^-5^-6^ 
 -7^-8^-9^-10^ 
 -11^-12^-13 …
ਫਰਮਾ:OEIS2C [0;1,2,4,2,1,3,1,2,2,1,4,1,2,4,3,1,1,10,1,3,2,...] 0.69034712611496431946732843846418942
0.65836 55992 ... Lower límit iterated exponential[187] H2n limnH2n=(12)(13)(14)(12n)=2342n
2^-3^-4^-5^-6^ 
 -7^-8^-9^-10^ 
 -11^-12 …
[0;1,1,1,12,1,2,1,1,4,3,1,1,2,1,2,1,51,2,2,1,...] 0.6583655992...
3.14159 26535 89793 23846[Mw 161] π number, Archimedes number[188] π limn2n22+2++2n
Sum[n=0 to ∞]
{(-1)^n 4/(2n+1)}
T ਫਰਮਾ:OEIS2C [3;7,15,1,292,1,1,1,2,1,3,1,14,2,1,1,2,2,2,...] 3.14159265358979323846264338327950288
1.92878 00...[Mw 162] Wright constant[189]


ω 2222ω= primes:2ω=3,22ω=13,222ω=16381, ਫਰਮਾ:OEIS2C [1; 1, 13, 24, 2, 1, 1, 3, 1, 1, 3] 1.9287800...
0.46364 76090 00806 11621 Machin–Gregory series[190] arctan12 n=0(1)nx2n+12n+1=121323+15251727+For x=1/2
Sum[n=0 to ∞] 
{(-1)^n (1/2)^(2n+1)
/(2n+1)}
I ਫਰਮਾ:OEIS2C [0;2,6,2,1,1,1,6,1,2,1,1,2,10,1,2,1,2,1,1,1,...] 0.46364760900080611621425623146121440
0.69777 46579 64007 98200[Mw 163] Continued fraction constant, Bessel function[191] CCF I1(2)I0(2)=n=0nn!n!n=01n!n!=11+12+13+14+15+16+1/
(Sum [n=0 to ∞]
{n/(n!n!)}) /
(Sum [n=0 to ∞]
{1/(n!n!)})
I ਫਰਮਾ:OEIS2C [0;1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,...]
= [0;ਫਰਮਾ:Overline], p∈ℕ
0.69777465796400798200679059255175260
1.90216 05831 04[Mw 164] Brun 2 constant = Σ inverse of Twin primes[192] B2 (1p+1p+2)p,p+2: prime=(13+15)+(15+17)+(111+113)+ ਫਰਮਾ:OEIS2C [1; 1, 9, 4, 1, 1, 8, 3, 4, 4, 2, 2] 1.902160583104
0.87058 83799 75[Mw 165] Brun 4 constant = Σ inv.prime quadruplets[193]



B4 (1p+1p+2+1p+6+1p+8)p,p+2,p+6,p+8: prime

(15+17+111+113)+(111+113+117+119)+

ਫਰਮਾ:OEIS2C [0; 1, 6, 1, 2, 1, 2, 956, 3, 1, 1] 0.870588379975

0.63661 97723 67581 34307[Mw 166] [Ow 8]

Buffon constant[194] 2π 222+222+2+22 Viète product
2/Pi
T ਫਰਮਾ:OEIS2C [0;1,1,1,3,31,1,145,1,4,2,8,1,6,1,2,3,1,4,...] 1540
to
1603
0.63661977236758134307553505349005745
0.59634 73623 23194 07434[Mw 167] Euler–Gompertz constant[195] G 0en1+ndn=0111lnndn=11+11+11+21+21+31+3/
integral[0 to ∞]
{(e^-n)/(1+n)}
I ਫਰਮਾ:OEIS2C [0;1,1,2,10,1,1,4,2,2,13,2,4,1,32,4,8,1,1,1,...] 0.59634736232319407434107849936927937
i ···[Mw 168]
Imaginary number[196] i 1=ln(1)πeiπ=1
sqrt(-1)
C I 1501
to
1576
i
2.74723 82749 32304 33305 Ramanujan nested radical[197]



R5 5+5+55+5+5+5=2+5+15652
(2+sqrt(5)
+sqrt(15
-6 sqrt(5)))/2
A [2;1,2,1,21,1,7,2,1,1,2,1,2,1,17,4,4,1,1,4,2,...] 2.74723827493230433305746518613420282
0.56714 32904 09783 87299[Mw 169] Omega constant, Lambert W function[198] Ω n=1(n)n1n!=(1e)(1e)(1e)=eΩ=eeee
Sum[n=1 to ∞]
{(-n)^(n-1)/n!}
T ਫਰਮਾ:OEIS2C [0;1,1,3,4,2,10,4,1,1,1,1,2,7,306,1,5,1,2,1,...] 0.56714329040978387299996866221035555
0.96894 61462 59369 38048 Beta(3)[199] β(3) π332=n=11n+1(1+2n)3=113133+153173+
Sum[n=1 to ∞]
{(-1)^(n+1)
/(-1+2n)^3}
T ਫਰਮਾ:OEIS2C [0;1,31,4,1,18,21,1,1,2,1,2,1,3,6,3,28,1,...] 0.96894614625936938048363484584691860
2.23606 79774 99789 69640 Square root of 5, Gauss sum[200] 5 (n=5)k=0n1e2k2πin=1+e2πi5+e8πi5+e18πi5+e32πi5
Sum[k=0 to 4]
{e^(2k^2 pi i/5)}
A ਫਰਮਾ:OEIS2C [2;4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,...]
= [2;ਫਰਮਾ:Overline,...]
2.23606797749978969640917366873127624
3.35988 56662 43177 55317[Mw 170] Prévost constant Reciprocal Fibonacci constant[201] Ψ n=11Fn=11+11+12+13+15+18+113+

Fn: Fibonacci series

Sum[n=1 to ∞]
{1/Fibonacci[n]}
I ਫਰਮਾ:OEIS2C [3;2,1,3,1,1,13,2,3,3,2,1,1,6,3,2,4,362,...] ? 3.35988566624317755317201130291892717
ਫਰਮਾ:Nobr[Mw 171] Khinchin's constant[202] K0 n=1[1+1n(n+2)]lnn/ln2
Prod[n=1 to ∞] 
 {(1+1/(n(n+2))) 
 ^(ln(n)/ln(2))}
T ਫਰਮਾ:OEIS2C [2;1,2,5,1,1,2,1,1,3,10,2,1,3,2,24,1,3,2,...] 1934 2.68545200106530644530971483548179569

ਇਹ ਵੀ ਦੇਖੋ

ਬਾਹਰੀ ਲਿੰਕ

ਨੋਟਸ

ਫਰਮਾ:Reflist

Site MathWorld Wolfram.com

ਫਰਮਾ:Reflist

Site OEIS Wiki

ਫਰਮਾ:Reflist


ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:<ref> tags exist for a group named "Mw", but no corresponding <references group="Mw"/> tag was found

  1. ਫਰਮਾ:Cite book
  2. ਫਰਮਾ:Cite book
  3. ਫਰਮਾ:Cite book
  4. ਫਰਮਾ:Cite book
  5. ਫਰਮਾ:Cite book
  6. ਫਰਮਾ:Cite book
  7. ਫਰਮਾ:Cite book
  8. ਫਰਮਾ:Cite book
  9. ਫਰਮਾ:Cite book
  10. ਫਰਮਾ:Cite book
  11. ਫਰਮਾ:Cite book
  12. ਫਰਮਾ:Cite book
  13. ਫਰਮਾ:Cite arXiv
  14. ਫਰਮਾ:Cite book
  15. ਫਰਮਾ:Cite book
  16. ਫਰਮਾ:Cite arXiv
  17. ਫਰਮਾ:Cite book
  18. ਫਰਮਾ:Cite book
  19. ਫਰਮਾ:Cite book
  20. ਫਰਮਾ:Cite book
  21. ਫਰਮਾ:Cite arXiv
  22. ਫਰਮਾ:Cite book
  23. ਫਰਮਾ:Cite book
  24. ਫਰਮਾ:Cite book
  25. ਫਰਮਾ:Cite book
  26. ਫਰਮਾ:Cite book
  27. ਫਰਮਾ:Cite book
  28. ਫਰਮਾ:Cite book
  29. ਫਰਮਾ:Cite book
  30. ਫਰਮਾ:Cite book
  31. ਫਰਮਾ:Cite book
  32. ਫਰਮਾ:Cite book
  33. ਫਰਮਾ:Cite book
  34. ਫਰਮਾ:Cite arXiv
  35. ਫਰਮਾ:Cite book
  36. ਫਰਮਾ:Cite arXiv
  37. ਫਰਮਾ:Cite book
  38. ਫਰਮਾ:Cite book
  39. ਫਰਮਾ:Cite arXiv
  40. ਫਰਮਾ:Cite book
  41. ਫਰਮਾ:Cite arXiv
  42. ਫਰਮਾ:Cite book
  43. ਫਰਮਾ:Cite book
  44. ਫਰਮਾ:Cite book
  45. ਫਰਮਾ:Cite book
  46. ਫਰਮਾ:Cite book
  47. ਫਰਮਾ:Cite book
  48. ਫਰਮਾ:Cite book
  49. ਫਰਮਾ:Cite book
  50. ਫਰਮਾ:Cite book
  51. ਫਰਮਾ:Cite arXiv
  52. ਫਰਮਾ:Cite book
  53. ਫਰਮਾ:Cite book
  54. ਫਰਮਾ:Cite book
  55. ਫਰਮਾ:Cite book
  56. ਫਰਮਾ:Cite book
  57. ਫਰਮਾ:Cite book
  58. ਫਰਮਾ:Cite book
  59. ਫਰਮਾ:Cite arXiv
  60. ਫਰਮਾ:Cite book
  61. ਫਰਮਾ:Cite book
  62. ਫਰਮਾ:Cite book
  63. ਫਰਮਾ:Cite arXiv
  64. ਫਰਮਾ:Cite book
  65. ਫਰਮਾ:Cite arXiv
  66. ਫਰਮਾ:Cite book
  67. ਫਰਮਾ:Cite book
  68. ਫਰਮਾ:Cite book
  69. ਫਰਮਾ:Cite book
  70. ਫਰਮਾ:Cite book
  71. ਫਰਮਾ:Cite book
  72. ਫਰਮਾ:Cite book
  73. ਫਰਮਾ:Cite book
  74. ਫਰਮਾ:Cite book
  75. ਫਰਮਾ:Cite book
  76. ਫਰਮਾ:Cite book
  77. ਫਰਮਾ:Cite book
  78. ਫਰਮਾ:Cite book
  79. ਫਰਮਾ:Cite arXiv
  80. ਫਰਮਾ:Cite book
  81. ਫਰਮਾ:Cite book
  82. ਫਰਮਾ:Cite book
  83. ਫਰਮਾ:Cite book
  84. ਫਰਮਾ:Cite book
  85. ਫਰਮਾ:Cite book
  86. ਫਰਮਾ:Cite book
  87. ਫਰਮਾ:Cite book
  88. ਫਰਮਾ:Cite book
  89. ਫਰਮਾ:Cite book
  90. ਫਰਮਾ:Cite book
  91. ਫਰਮਾ:Cite book
  92. ਫਰਮਾ:Cite book
  93. ਫਰਮਾ:Cite book
  94. ਫਰਮਾ:Cite book
  95. ਫਰਮਾ:Cite book
  96. ਫਰਮਾ:Cite book
  97. ਫਰਮਾ:Cite book
  98. ਫਰਮਾ:Cite book
  99. ਫਰਮਾ:Cite book
  100. ਫਰਮਾ:Cite book
  101. ਫਰਮਾ:Cite book
  102. ਫਰਮਾ:Cite book
  103. ਫਰਮਾ:Cite book
  104. ਫਰਮਾ:Cite book
  105. ਫਰਮਾ:Cite book
  106. ਫਰਮਾ:Cite book
  107. ਫਰਮਾ:Cite book
  108. ਫਰਮਾ:Cite book
  109. ਫਰਮਾ:Cite book
  110. ਫਰਮਾ:Cite book
  111. ਫਰਮਾ:Cite book
  112. ਫਰਮਾ:Cite book
  113. ਫਰਮਾ:Cite book
  114. ਫਰਮਾ:Cite book
  115. ਫਰਮਾ:Cite book
  116. ਫਰਮਾ:Cite book
  117. 117.0 117.1 ਫਰਮਾ:Cite book
  118. ਫਰਮਾ:Cite book
  119. ਫਰਮਾ:Cite book
  120. ਫਰਮਾ:Cite journal
  121. ਫਰਮਾ:Cite journal
  122. ਫਰਮਾ:Cite book
  123. ਫਰਮਾ:Cite book
  124. ਫਰਮਾ:Cite book
  125. ਫਰਮਾ:Cite book
  126. ਫਰਮਾ:Cite book
  127. ਫਰਮਾ:Cite bookਫਰਮਾ:ਮੁਰਦਾ ਕੜੀ
  128. ਫਰਮਾ:Cite book
  129. ਫਰਮਾ:Cite book
  130. ਫਰਮਾ:Cite book
  131. ਫਰਮਾ:Cite book
  132. ਫਰਮਾ:Cite book
  133. ਫਰਮਾ:Cite book
  134. ਫਰਮਾ:Cite book
  135. ਫਰਮਾ:Cite arXiv
  136. ਫਰਮਾ:Cite book
  137. ਫਰਮਾ:Cite book
  138. ਫਰਮਾ:Cite book
  139. ਫਰਮਾ:Cite book
  140. ਫਰਮਾ:Cite book
  141. ਫਰਮਾ:Cite book
  142. ਫਰਮਾ:Cite book
  143. ਫਰਮਾ:Cite book
  144. ਫਰਮਾ:Cite book
  145. ਫਰਮਾ:Cite book
  146. ਫਰਮਾ:Cite book
  147. ਫਰਮਾ:Cite book
  148. ਫਰਮਾ:Cite book
  149. ਫਰਮਾ:Cite book
  150. ਫਰਮਾ:Cite book
  151. ਫਰਮਾ:Cite book
  152. ਫਰਮਾ:Cite book
  153. ਫਰਮਾ:Cite book
  154. ਫਰਮਾ:Cite bookਫਰਮਾ:ਮੁਰਦਾ ਕੜੀ
  155. ਫਰਮਾ:Cite book
  156. ਫਰਮਾ:Cite book
  157. ਫਰਮਾ:Cite book
  158. ਫਰਮਾ:Cite book
  159. ਫਰਮਾ:Cite book
  160. ਫਰਮਾ:Cite book
  161. ਫਰਮਾ:Cite book
  162. ਫਰਮਾ:Cite journal
  163. ਫਰਮਾ:Cite book
  164. ਫਰਮਾ:Cite book
  165. ਫਰਮਾ:Cite book
  166. ਫਰਮਾ:Cite book
  167. ਫਰਮਾ:Cite book
  168. ਫਰਮਾ:Cite book
  169. ਫਰਮਾ:Cite book
  170. ਫਰਮਾ:Cite book
  171. ਫਰਮਾ:Cite book
  172. ਫਰਮਾ:Cite arXiv
  173. ਫਰਮਾ:Cite book
  174. ਫਰਮਾ:Cite book
  175. ਫਰਮਾ:Cite book
  176. ਫਰਮਾ:Cite book
  177. ਫਰਮਾ:Cite book
  178. ਫਰਮਾ:Cite book
  179. ਫਰਮਾ:Cite book
  180. ਫਰਮਾ:Cite book
  181. ਫਰਮਾ:Cite book
  182. ਫਰਮਾ:Cite book
  183. ਫਰਮਾ:Cite book
  184. ਫਰਮਾ:Cite book
  185. ਫਰਮਾ:Cite book
  186. ਫਰਮਾ:Cite bookਫਰਮਾ:ਮੁਰਦਾ ਕੜੀ
  187. ਫਰਮਾ:Cite book
  188. ਫਰਮਾ:Cite book
  189. ਫਰਮਾ:Cite book
  190. ਫਰਮਾ:Cite book
  191. ਫਰਮਾ:Cite book
  192. ਫਰਮਾ:Cite book
  193. ਫਰਮਾ:Cite book
  194. ਫਰਮਾ:Cite book
  195. ਫਰਮਾ:Cite book
  196. ਫਰਮਾ:Cite book
  197. ਫਰਮਾ:Cite book
  198. ਫਰਮਾ:Cite book
  199. ਫਰਮਾ:Cite arXiv
  200. ਫਰਮਾ:Cite book
  201. ਫਰਮਾ:Cite book
  202. ਫਰਮਾ:Cite book


ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:<ref> tags exist for a group named "Ow", but no corresponding <references group="Ow"/> tag was found