ਲੀ ਅਲਜਬਰਾ
ਫਰਮਾ:Redirect ਫਰਮਾ:Lie groups ਗਣਿਤ ਵਿੱਚ, ਇੱਕ ਲੀ ਅਲਜਬਰਾ (ਉੱਚਾਰਣ ਫਰਮਾ:IPAc-en "ਲੀ") ਕਿਸੇ ਗੈਰ-ਐਸੋਸੀਏਟਿਵ, ਬਦਲਵੇਂ ਬਾਇਲੀਨੀਅਰ ਮੈਪ , ਜਿਸਨੂੰ ਜੈਕਬੀ ਆਇਡੈਂਟਿਟੀ ਸਤੁੰਸ਼ਟ ਕਰਨ ਵਾਲੀ ਲੀ ਬ੍ਰਾਕੈੱਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ, ਨਾਲ ਇੱਕ ਵੈਕਟਰ ਸਪੇਸ ਹੁੰਦਾ ਹੈ।
ਲੀ ਅਲਜਬਰੇ ਲੀ ਗਰੁੱਪਾਂ ਨਾਲ ਨੇੜੇ ਟੌਪੌਲੌਜੀ ਸਬੰਧਤ ਹੁੰਦੇ ਹਨ, ਜੋ ਅਜਿਹੇ ਗਰੁੱਪ ਹੁੰਦੇ ਹਨ, ਜੋ ਸੁਚਾਰੂ ਮੈਨੀਫੋਲਡ ਵੀ ਹੁੰਦੇ ਹਨ, ਜਿਹਨਾਂ ਦੀ ਇਹ ਵਿਸ਼ੇਸ਼ਤਾ ਹੁੰਦੀ ਹੈ ਕਿ ਗੁਣਨਫਲ ਅਤੇ ਇਨਵਰਸ਼ਨ ਦੇ ਗਰੁੱਪ ਓਪਰੇਸ਼ਨ ਸੁਚਾਰੂ ਮੈਪ ਹੁੰਦੇ ਹਨ। ਕੋਈ ਵੀ ਲੀ ਗਰੁੱਪ ਕਿਸੇ ਲੀ ਅਲਜਬਰੇ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਇਸਦੇ ਉਲਟ, ਵਾਸਤਵਿਕ ਜਾਂ ਕੰਪਲੈਕਸ ਨੰਬਰਾਂ ਉੱਪਰ ਕਿਸੇ ਵੀ ਸੀਮਤ-ਅਯਾਮੀ ਲੀ ਅਲਜਬਰੇ ਲਈ, ਕਵਰਿੰਗ ਤੱਕ ਇੱਕ ਸਬੰਧਤ ਜੁੜਿਆ ਹੋਇਆ ਲੀ ਗਰੁੱਪ ਨਿਰਾਲਾ ਹੁੰਦਾ ਹੈ (ਲੀ ਦੀ ਤੀਜੀ ਥਿਊਰਮ)। ਇਹ ਲੀ ਗਰੁੱਪਾਂ ਅਤੇ ਲੀ ਅਲਜਬਰਿਆਂ ਦਰਮਿਆਨ ਮੇਲਜੋਲ ਲਾਈ ਅਲਜਬਰਿਆਂ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਲੀ ਗਰੁੱਪਾਂ ਦੇ ਅਧਿਐਨ ਦੇ ਕਾਬਲ ਕਰਦਾ ਹੈ।
ਲੀ ਅਲਜਬਰੇ ਅਤੇ ਇਹਨਾਂ ਦੀਆਂ ਪ੍ਰਸਤੁਤੀਆਂ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ ਬਹੁਤ ਵੱਡੇ ਪੈਮਾਨੇ ਉੱਤੇ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਖਾਸ ਕਰਕੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਵਿੱਚ । ਲੀ ਅਲਜਬਰਿਆਂ ਦਾ ਨਾਮ 1930ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਸੋਫਸ ਲੀ ਦੇ ਨਾਮ ਤੋਂ ਹਰਮਨ ਵੇਇਲ ਨੇ ਰੱਖਿਆ । ਪੁਰਾਣੀਆਂ ਪੁਸਤਕਾਂ ਵਿੱਚ, ਨਾਮ ਅਤਿਸੂਖਮ ਗਰੁੱਪ ਵਰਤਿਆ ਜਾਂਦਾ ਰਿਹਾ ਹੈ।
ਇਤਿਹਾਸ
ਲੀ ਅਲਜਬਰੇ 1870ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਮਾਰੀਅਸ ਸੋਫਸ ਲੀ ਦੁਆਰਾ ਅਤਿਸੂਖਮ ਰੂਪਾਂਤ੍ਰਨਾਂ ਦੀ ਧਾਰਨਾ ਦਾ ਅਧਿਐਨ ਕਰਨ ਲਈ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਸਨ[1], ਅਤੇ ਸੁਤੰਤਰ ਤੌਰ ਤੇ 1880ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਵਿਲਹੇਲਮ ਕਿਲਿੰਗ ਦੁਆਰਾ ਖੋਜੇ ਗਏ ਸਨ।[2]
ਪਰਿਭਾਸ਼ਾਵਾਂ
ਕਿਸੇ ਲੀ ਅਲਜਬਰੇ ਦੀ ਪਰਿਭਾਸ਼ਾ
ਇੱਕ ਲੀ ਅਲਜਬਰਾ ਇੱਕ ਬਾਇਨਰੀ ਓਪਰੇਸ਼ਨ ਦੇ ਨਾਲ ਨਾਲ, ਕਿਸੇ ਫੀਲਡ F[nb 1] ਜਿਸ ਨੂੰ ਲੀ ਬ੍ਰਾਕੈੱਟ ਕਿਹਾ ਜਾਂਦਾ ਹੇ ਜੋ ਹੇਠਾਂ ਲਿਖੇ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤਾਂ ਤੇ ਖਰੀ ਉਤਰਦੀ ਹੈ:
- ਵਿੱਚ, ਸਾਤੇ ਤੱਤਾਂ x, y, z ਅਤੇ F ਵਿੱਚ ਸਾਰੇ ਸਕੇਲਰਾਂ a, b ਲਈ ।
- ਵਿੱਚ ਸਾਰੇ x ਲਈ ।
- ਅੰਦਰ ਸਾਰੇ x, y, z ਵਾਸਤੇ ।
ਟਿੱਪਣੀਆਂ
ਨੋਟਸ
ਹਵਾਲੇ
- Beltita, Daniel. Smooth Homogeneous Structures in Operator Theory, CRC Press, 2005. ਫਰਮਾ:Isbn
- Boza, Luis; Fedriani, Eugenio M. & Núñez, Juan. A new method for classifying complex filiform Lie algebras, Applied Mathematics and Computation, 121 (2-3): 169–175, 2001
- ਫਰਮਾ:Cite book
- Erdmann, Karin & Wildon, Mark. Introduction to Lie Algebras, 1st edition, Springer, 2006. ਫਰਮਾ:Isbn
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite web
- ਫਰਮਾ:Cite web
- ਫਰਮਾ:Cite book
- Steeb, W.-H. Continuous Symmetries, Lie Algebras, Differential Equations and Computer Algebra, second edition, World Scientific, 2007, ਫਰਮਾ:Isbn
- ਫਰਮਾ:Cite book
ਬਾਹਰੀ ਲਿੰਕ
- ਫਰਮਾ:Springer
- McKenzie, Douglas, (2015), "An Elementary Introduction to Lie Algebras for Physicists"
ਫਰਮਾ:Authority control
ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:<ref> tags exist for a group named "nb", but no corresponding <references group="nb"/> tag was found