ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ
ਫਰਮਾ:Sidebar with collapsible lists
ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਰਿਲੇਟਿਵਿਸਟਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ (RQM) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਕੋਈ ਵੀ ਪੋਆਇਨਕੇਅਰ ਕੋਵੇਰਿਅੰਟ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਹੁੰਦੀ ਹੈ। ਇਹ ਥਿਊਰੀ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ c ਦੇ ਤੁਲਨਾਤਮਿਕ ਸਾਰੀਆਂ ਵਿਲੌਸਿਟੀਆਂ ਉੱਤੇ ਸੰਚਾਰਿਤ ਪੁੰਜ-ਯੁਕਤ ਕਣਾਂ ਪ੍ਰਤਿ ਲਾਗੂ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਪੁੰਜ-ਰਹਿਤ ਕਣਾਂ ਨੂੰ ਅਨੁਕੂਲ ਕਰਦੀ ਹੈ। ਇਸ ਥਿਊਰੀ ਦੇ ਉਪਯੋਗ ਉੱਚ-ਊਰਜਾ ਭੌਤਿਕ ਵਿਗਿਆਨ,[1], ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ, ਅਤੇ ਐਕਸਲ੍ਰੇਟਰ ਭੌਤਿਕ ਵਿਗਿਆਨ[2] ਦੇ ਨਾਲ ਨਾਲ ਐਟੋਮਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ, ਰਸਾਇਣ ਵਿਗਿਆਨ[3], ਅਤੇ ਕੰਡੈੱਨਸਡ ਮੈਟਰ ਭੌਤਿਕ ਵਿਗਿਆਨ[4][5] ਵਿੱਚ ਵੀ ਹਨ। ਗੈਰ-ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗੈਲੀਲੀਅਨ ਸਾਪੇਖਿਕਤਾ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਲਾਗੂ ਹੋਣ ਵਾਲੀ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਗਣਿਤਿਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਜੋ ਜਿਆਦਾ ਖਾਸ ਤੌਰ ਤੇ ਓਪਰੇਟਰਾਂ ਦੁਆਰਾ ਗਤੀਸ਼ੀਲ ਅਸਥਿਰਾਂ ਨੂੰ ਬਦਲ ਕੇ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਦਾ ਨਿਰਾਧਾਰੀਕਰਨ ਕਰਦਾ ਹੈ। ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਉਹ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਹੈ ਜੋ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਮੇਤ ਲਾਗੂ ਹੁੰਦਾ ਹੈ, ਪਰ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਸਮੇਤ ਲਾਗੂ ਨਹੀਂ ਹੁੰਦਾ। ਬੇਸ਼ੱਕ ਪਹਿਲੀਆਂ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ, ਜਿਵੇਂ ਸ਼੍ਰੋਡਿੰਜਰ ਤਸਵੀਰ ਅਤੇ ਹੇਜ਼ਨਬਰਗ ਤਸਵੀਰ ਮੂਲ ਰੂਪ ਵਿੱਚ ਇੱਕ ਗੈਰਸਾਪੇਖਿਕ ਪਿਛੋਕੜ ਵਿੱਚ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੱਧ ਕੀਤੀਆਂ ਗਈਆਂ ਸਨ, ਤਾਂ ਵੀ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀਆਂ ਇਹ ਤਸਵੀਰਾਂ ਵੀ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਸਮੇਤ ਲਾਗੂ ਹੁੰਦੀਆਂ ਹਨ।
ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਕੁੱਝ ਸੰਦ੍ਰਭਾਂ ਵਿੱਚ ਮੂਲ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ਼ੋਂ ਜਿਆਦਾ ਸਫ਼ਲ ਰਿਹਾ ਹੈ, ਖਾਸ ਕਰਕੇ: ਐਂਟੀਮੈਟਰ, ਇਲੈਕਟ੍ਰੌਨ ਸਪਿੱਨ, ਬੁਨਿਆਦੀ ਸਪਿੱਨ-1/2 ਫਰਮੀਔਨਾਂ ਦੀ ਸਪਿੱਨ ਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟਾ, ਫਾਈਨ ਸਟ੍ਰਕਚਰ, ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਅੰਦਰ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕਣਾਂ ਦਾ ਕੁਆਂਟਮ ਡਾਇਨਾਮਿਕਸ।[6] ਪ੍ਰਮੁੱਖ ਨਤੀਜਾ ਡੀਰਾਕ ਸਮੀਕਰਨ ਹੈ, ਜਿਸਤੋਂ ਇਹ ਅਨੁਮਾਨ ਆਪੇ ਹੀ ਲੱਗ ਜਾਂਦੇ ਹਨ। ਇਸਦੀ ਤੁਲਨਾ ਵਿੱਚ, ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਪ੍ਰਯੋਗਿਕ ਪਰਖਾਂ ਨਾਲ ਸਹਿਮਤੀ ਖੱਟਣ ਲਈ ਰਕਮਾਂ ਨੂੰ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਵਿੱਚ ਬਣਾਵਟੀ ਤੌਰ ਤੇ ਦਾਖਲ ਕਰਨਾ ਪੈਂਦਾ ਹੈ।
ਇੰਨਾ ਹੀ ਨਹੀਂ, ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗਿਆਤ ਕਣ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਪੂਰੀ ਤਰਾਂ ਸਵੈ-ਅਨੁਕੂਲ ਸਾਪੇਖਿਕ ਥਿਊਰੀ ਪ੍ਰਤਿ ਇੱਕੋ ਇੱਕ ਸੰਖੇਪਤਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦੀ ਜਿੱਥੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਬਦਲ ਜਾਂਦੀ ਹੈ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਪਦਾਰਥਕ ਰਚਨਾ ਅਤੇ ਵਿਨਾਸ਼ (ਐਨਹੀਲੇਸ਼ਨ) ਵਿੱਚ।[7] ਹੁਣ ਤੱਕ, ਇੱਕ ਹੋਰ ਸਿਧਾਂਤਿਕ ਤਰੱਕੀ, ਇੱਕ ਹੋਰ ਸ਼ੁੱਧ ਥਿਊਰੀ ਜੋ ਇਹਨਾਂ ਹੋਂਦਾ ਅਤੇ ਹੋਰ ਅਨੁਮਾਨਾਂ ਲਈ ਪ੍ਰਵਾਨਗੀ ਦੇਵੇ ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰਹੀ ਹੈ ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਵਿਆਖਿਆ ਫੀਲਡ ਕੁਆਂਟਾ ਦੇ ਤੌਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। (ਵੇਰਵਿਆਂ ਲਈ ਲੇਖ ਦੇਖੋ)
ਇੰਨਾ ਹੀ ਨਹੀਂ, ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਗਿਆਤ ਕਣ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਇੱਕ ਪੂਰੀ ਤਰਾਂ ਸਵੈ-ਅਨੁਕੂਲ ਸਾਪੇਖਿਕ ਥਿਊਰੀ ਪ੍ਰਤਿ ਇੱਕੋ ਇੱਕ ਸਂਖੇਪਤਾ ਹੈ ਕਿਉਂਕਿ ਇਹ ਅਜਿਹੇ ਮਾਮਲਿਆਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦੀ ਜਿੱਥੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਬਦਲ ਜਾਂਦੀ ਹੈ; ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਪਦਾਰਥਕ ਰਚਨਾ ਅਤੇ ਵਿਨਾਸ਼ (ਐਨਹੀਲੇਸ਼ਨ) ਵਿੱਚ।[7] ਹੁਣ ਤੱਕ, ਇੱਕ ਹੋਰ ਸਿਧਾਂਤਿਕ ਤਰੱਕੀ, ਇੱਕ ਹੋਰ ਸ਼ੁੱਧ ਥਿਊਰੀ ਜੋ ਇਹਨਾਂ ਹੋਂਦਾ ਅਤੇ ਹੋਰ ਅਨੁਮਾਨਾਂ ਲਈ ਪ੍ਰਵਾਨਗੀ ਦੇਵੇ ਰਿਲੇਟੀਵਿਸਟਿਕ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਰਹੀ ਹੈ ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਵਿਆਖਿਆ ਫੀਲਡ ਕੁਆਂਟਾ ਦੇ ਤੌਰ ਤੇ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। (ਵੇਰਵਿਆਂ ਲਈ ਲੇਖ ਦੇਖੋ)
ਇਸ ਲੇਖ ਵਿੱਚ, ਸਮੀਕਰਨਾਂ ਨੂੰ ਜਾਣੀ-ਪਛਾਣੀ 3-ਅਯਾਮੀ ਵੈਕਟਰ ਕੈਲਕੁਲਸ ਚਿੰਨ-ਧਾਰਨਾ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ ਅਤੇ ਓਪਰੇਟਰਾਂ ਲਈ ਟੋਪੀਆਂ (ਹੈਟ) ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਗਈ ਹੈ (ਜੋ ਜਰੂਰੀ ਨਹੀਂ ਸਾਹਿਤ ਵਿੱਚ ਵੀ ਹੋਵੇ), ਅਤੇ ਜਿੱਥੇ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਪੁਰਜਿਆਂ ਨੂੰ ਇਕੱਠਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਟੈਂਸਰ ਸੂਚਕਾਂਕ ਧਾਰਨਾ ਨੂੰ ਵੀ ਦਿਖਾਇਆ ਗਿਆ ਹੈ (ਜੋ ਸਾਹਿਤ ਵਿੱਚ ਵਾਰ ਵਾਰ ਵਰਤੇ ਜਾਂਦੇ ਹਨ), ਅਤੇ ਇਸਦੇ ਨਾਲ ਨਾਲ ਆਈਨਸਟਾਈਨ ਜੋੜ ਪ੍ਰੰਪਰਾ ਦੀ ਵਰਤੋਂ ਵੀ ਕੀਤੀ ਗਈ ਹੈ। ਇੱਥੇ SI ਇਕਾਈਆਂ ਇੱਥੇ ਵਰਤੀਆਂ ਗਈਆਂ ਹਨ; ਗਾਔਸ਼ੀਅਨ ਇਕਾਈਆਂ ਅਤੇ ਕੁਦਰਤੀ ਇਕਾਈਆਂ ਸਾਂਝੇ ਬਦਲਵੇਂ ਬਿਕਲਪ ਹਨ। ਸਾਰੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਪੁਜੀਸ਼ਨ ਪ੍ਰਸਤੁਤੀ ਅੰਦਰ ਲਿਖੀਆਂ ਗਈਆਂ ਹਨ; ਮੋਮੈਂਟਮ ਪ੍ਰਸਤੁਤੀ ਵਾਸਤੇ ਇਕੁਏਸ਼ਨਾਂ ਨੂੰ ਫੋਰੀਅਰ ਟ੍ਰਾਂਸਫੌਰਮ ਕਰਨਾ ਹੀ ਪਿਆ ਹੈ – ਦੇਖੋ ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਸਪੇਸ
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਾ ਮੇਲ ਕਰਨਾ
ਇੱਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਨੂੰ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੇ ਅਨੁਕੂਲ ਬਣਾਉਣ ਵਾਸਤੇ ਸੋਧਣਾ ਹੈ।[2]
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਾ ਇੱਕ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਇਹ ਹੈ ਕਿ ਕਿਸੇ ਕੁਆਂਟਮ ਸਿਸਟਮ ਦਾ ਟਾਈਮ ਐਵੋਲੀਊਸ਼ਨ, ਸਿਸਟਮ ਨਾਲ ਸਬੰਧਤ ਇੱਕ ਢੁਕਵਾਂ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਵਰਤਦੇ ਹੋਏ, ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਮਿਲਦਾ ਹੈ:
ਹੱਲ, ਇੱਕ ਕੰਪਲੈਕਸ-ਮੁੱਲ ਵਾਲਾ ਵੇਵ ਫੰਕਸ਼ਨ ਫਰਮਾ:Math ਹੁੰਦਾ ਹੈ, ਜੋ ਸਿਸਟਮ ਦੇ ਵਰਤਾਓ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲ਼ੇ, ਵਕਤ ਫਰਮਾ:Math ਉੱਤੇ ਕਣ ਦੇ 3-ਅਯਾਮੀ ਪੁਜੀਸ਼ਨ ਵੈਕਟਰ ਫਰਮਾ:Math ਦਾ ਇੱਲ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ।
ਹਰੇਕ ਕਣ ਦਾ ਇੱਕ ਗੈਰ-ਨੈਗਟਿਵ ਸਪਿੱਨ ਕੁਆਂਟਮ ਨੰਬਰ ਫਰਮਾ:Math ਹੁੰਦਾ ਹੈ। ਨੰਬਰ ਫਰਮਾ:Math ਇੱਕ ਪੂਰਨ ਅੰਕ ਹੁੰਦਾ ਹੈ ਜੋ ਫਰਮੀਔਨਾਂ ਲਈ ਔਡ (ਟਾਂਕ ਜਾਂ ਬਿਖਮ) ਅਤੇ ਬੋਸੌਨਾਂ ਲਈ ਈਵਨ (ਸਮ ਜਾੰ ਜਿਸਤ) ਹੁੰਦਾ ਹੈ। ਹਰੇਕ ਫਰਮਾ:Math ਦੇ ਫਰਮਾ:Math z-ਪ੍ਰੋਜੈਕਸ਼ਨ ਕੁਆਂਟਮ ਨੰਬਰ ਹੁੰਦੇ ਹਨ; ਫਰਮਾ:Math.[note 1] ਇਹ ਇੱਕ ਅਤਿਰਿਕਤ ਅਨਿਰੰਤਰ ਚੱਲ ਹੁੰਦਾ ਹੈ ਜੋ ਵੇਵ ਫੰਕਸ਼ਨ ਮੰਗ ਕਰਦਾ ਹੈ; ਫਰਮਾ:Math।
ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ, ਸ਼ੁਰੂਆਤੀ 1920 ਵਿੱਚ ਪੌਲੀ, ਕ੍ਰੋਨਿਗ, ਉਲਹਨਬੈਕ ਅਤੇ ਗੁਡਸਮਿਥ ਵੱਲੋਂ ਸਪਿੱਨ ਦੀ ਧਾਰਨਾ ਪ੍ਰਸਤਾਵਿਤ ਕਰਨ ਵਾਲ਼ੇ ਪਹਿਲੇ ਇਨਸਾਨ ਸਨ। ਵੇਵ ਫੰਕਸ਼ਨ ਵਿੱਚ ਸਪਿੱਨ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨਾ, ਪੌਲੀ ਐਕਸਕਲੂਜ਼ਨ ਪ੍ਰਿੰਸੀਪਲ (1925) ਅਤੇ ਫੀਅਰਜ਼ ਦੀ ਹੋਰ ਸਰਵ ਸਧਾਰਨ ਸਪਿੱਨ-ਸਟੈਟਿਕਟਿਸ ਥਿਊਰਮ (1939) ਦਾ ਸਹੋਯੋਗ ਕਰਦਾ ਸੀ, ਜੋ ਇੱਕ ਸਾਲ ਬਾਦ ਪੌਲੀ ਦੁਆਰਾ ਪੁਨਰ-ਵਿਓਂਤਬੱਧ ਕੀਤੀ ਗਈ ਸੀ। ਇਹ ਐਟਮਾਂ, ਨਿਊਕਲੀਆਇ (ਅਤੇ ਇਸੇ ਕਾਰਨ ਆਪਣੀ ਰਸਾਇਣ ਵਿਗਿਆਨ ਅਤੇ ਪੀਰੀਔਡਿਕ ਟੇਬਲ ਉੱਤੇ ਸਾਰੇ ਤੱਤਾਂ ਦੀ ਵੀ) ਇਲੈਕਟ੍ਰੌਨਿਕ ਰਚਨਾ ਤੋਂ ਲੈ ਕੇ ਕੁਆਰਕ ਬਣਤਰਾਂ ਅਤੇ ਕਲਰ ਚਾਰਜ (ਇਸ ਤਰ੍ਹਾਂ ਬੇਰੌਨਾਂ ਅਤੇ ਮੀਜ਼ੌਨਾਂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ) ਤੱਕ ਦੇ ਵਰਤਾਰੇ ਅਤੇ ਉੱਪ-ਪ੍ਰਮਾਣੂ ਕਣ ਫਿਤਰਤ ਦੀ ਡਾਇਵਰਸ ਰੇਂਜ ਦੀ ਵਿਆਖਿਆ ਹੈ।
ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਇੱਕ ਬੁਨਿਆਦੀ ਅਨੁਮਾਨ ਸਾਪੇਖਿਕ ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਸਬੰਧ ਹੈ; ਰੈਸਟ ਮਾਸ ਫਰਮਾ:Math, ਅਤੇ ਕਿਸੇ ਖਾਸ ਰੈੱਫ੍ਰੈਂਸ ਫਰੇਮ ਅੰਦਰ ਊਰਜਾ ਫਰਮਾ:Math ਅਤੇ ਡੌਟ ਪ੍ਰੋਡਕਟ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਫਰਮਾ:Math ਮਾਤਰਾ ਵਾਲੇ 3-ਮੋਮੈਂਟਮ ਫਰਮਾ:Math ਸਮੇਤ ਕਿਸੇ ਕਣ ਲਈ ਇਹ ਸਬੰਧ ਇਵੇਂ ਹੁੰਦਾ ਹੈ:[8]
ਊਰਜਾ-ਮੋਮੈਂਟਮ ਸਬੰਧ ਦੇ ਅਨੁਕੂਲ ਇੱਕ ਅੰਸ਼ਿਕ ਡਿੱਫ਼੍ਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨ ਜੋ ਕਣ ਦੀ ਕੁਆਂਟਮ ਯੰਤ੍ਰਾਵਲੀ ਅਨੁਮਾਨਿਤ ਕਰਨ ਲਈ ਫਰਮਾ:Math ਵਾਸਤੇ ਹੱਲ ਕੀਤੀ ਜਾਣ ਵਾਲ਼ੀ ਇੱਕ ਸਾਪੇਖਿਕ ਵੇਵ ਇਕੁਏਸ਼ਨ ਰਚਣ ਲਈ, ਇਹ ਸਮੀਕਰਨਾਂ ਊਰਜਾ ਅਤੇ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰਾਂ ਨਾਲ ਇਕੱਠੀਆਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜੋ ਕ੍ਰਮਵਾਰ ਇਹ ਹਨ:
ਸਪੇਸ ਅਤੇ ਟਾਈਮ
ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਅਤੇ ਗੈਰ-ਸਾਪੇਖਾਤਮਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਸਮਾਂ ਇੱਕ ਅਜਿਹੀ ਸ਼ੁੱਧ ਮਾਤਰਾ ਹੈ ਜਿਸ ਉੱਤੇ ਸਾਰੇ ਔਬਜ਼ਰਵਰ ਅਤੇ ਕਣ ਹਮੇਸਾਂ ਹੀ ਸਹਿਮਤ ਹੁੰਦੇ ਹਨ, ਜੋ ਸਪੇਸ ਤੋਂ ਸੁਤੰਤਰ ਪਿਛੋਕੜ ਵਿੱਚ ਟਿੱਕ ਟਿੱਕ ਚਲਦਾ ਹੈ। ਇਸ ਤਰ੍ਹਾਂ ਗੈਰ-ਸਾਪੇਖਾਤਮਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਕਿਸੇ ਕਈ ਕਣ ਸਿਸਟਮ ਲਈ ਸਾਡੇ ਕੋਲ ਫਰਮਾ:Math ਹੁੰਦਾ ਹੈ।
ਰਿਲੇਟਵਿਸਟਿਕ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਸਪੈਸ਼ੀਅਲ ਕੋ-ਆਰਡੀਨੇਟ ਅਤੇ ਨਿਰਦੇਸ਼ਾਂਕ ਸਮਾਂ ਸ਼ੁੱਧ ਨਹੀਂ ਹੁੰਦੇ; ਕੋਈ ਦੋ ਔਬਜ਼ਰਵਰ ਜੋ ਇੱਕ ਦੂਜੇ ਦੇ ਸਾਪੇਖਿਕ ਗਤੀਸ਼ੀਲ ਹੋਣ, ਘਟਨਾਵਾਂ ਦੇ ਵੱਖਰੇ ਸਥਾਨ ਅਤੇ ਸਮੇਂ ਨਾਪ ਸਕਦੇ ਹਨ। ਪੁਜੀਸ਼ਨ ਅਤੇ ਟਾਈਮ ਕੋ-ਆਰਡੀਨੇਟ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਮਿਲ ਕੇ ਘਟਨਾਵਾਂ ਨਾਲ ਸਬੰਧਤ ਇੱਕ ਚਾਰ-ਅਯਾਮੀ ਸਪੇਸਟਾਈਮ ਪੁਜੀਸ਼ਨ ਫਰਮਾ:Math ਬਣਾਉਂਦੇ ਹਨ, ਅਤੇ ਊਰਜਾ ਤੇ 3-ਮੋਮੈਂਟਮ ਕੁਦਰਤੀ ਤੌਰ ਤੇ ਮਿਲ ਕੇ ਕਿਸੇ ਗਤੀਸ਼ੀਲ ਕਣ ਦਾ ਫੋਰ ਮੋਮੈਂਟਮ ਫਰਮਾ:Math ਰਚਦੇ ਹਨ, ਜਿਵੇਂ ਕਿਸੇ ਰੈੱਫਰੈਂਸ ਫਰੇਮ ਵਿੱਚ ਨਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਵਿਚਾਰਾਧੀਨ ਮੂਲ ਫਰੇਮ ਦੇ ਸਾਪੇਖਿਕ ਘੁਮਾਉਣ ਤੇ ਜਾਂ/ਅਤੇ ਕਿਸੇ ਵੱਖਰੀ ਫਰੇਮ ਵਿੱਚ ਵਧਾ ਕੇ ਨਾਪਣ ਤੇ ਇੱਕ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸਨ ਮੁਤਾਬਿਕ ਬਦਲਦਾ ਹੈ। ਡੈਰੀਵੇਟਿਵ ਓਪਰੇਟਰ, ਅਤੇ ਇਸੇ ਤਰਾਂ ਊਰਜਾ ਤੇ 3-ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਵੀ ਗੈਰ-ਇਨਵੇਰੀਅੰਟ (ਅਸਥਿਰ) ਹੁੰਦੇ ਹਨ ਜੋ ਲੌਰੱਟਜ਼ ਪਰਿਵਰਤਨਾਂ ਅਧੀਨ ਬਦਲ ਜਾਂਦੇ ਹਨ।
ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਅੰਦਰ, ਇੱਕ ਢੁਕਵੀਂ ਔਰਥੋਕ੍ਰੋਨਸ ਲੌਰੰਟਜ਼ ਟਰਾਂਸਫੋਰਮੇਸਨ ਫਰਮਾ:Math ਅਧੀਨ, ਸਾਰੀਆਂ ਇੱਕ-ਕਣ ਵਾਲੀਆਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਫਰਮਾ:Math ਸਥਾਨਿਕ ਤੌਰ ਤੇ ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਦੀ ਕਿਸੇ ਪ੍ਰਸਤੁਤੀ ਫਰਮਾ:Math ਅਧੀਨ ਪਰਵਰਤਿਤ ਹੁੰਦੇ ਹਨ:[9] [10]
ਜਿੱਥੇ ਫਰਮਾ:Math ਇੱਕ ਸੀਮਤ-ਅਯਾਮੀ ਪ੍ਰਸਤੁਤੀ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਇਹ ਇੱਕ ਫਰਮਾ:Math ਸਕੁਏਅਰ ਮੈਟ੍ਰਿਕਸ ਹੈ। ਫੇਰ ਤੋਂ, ਫਰਮਾ:Math ਨੂੰ ਫਰਮਾ:Math ਦੇ ਫਰਮਾ:Math ਪ੍ਰਵਾਨਿਤ ਮੁੱਲਾਂ ਵਾਲੇ ਕੰਪੋਨੈਂਟ ਰੱਖਣ ਵਾਲਾ ਇੱਕ ਕਾਲਮ ਵੈਕਟਰ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math ਕੁਆਂਟਮ ਨੰਬਰ ਅਤੇ ਹੋਰ ਨਾਮ, ਚਾਹੇ ਉਹ ਨਿਰੰਤਰ ਹੋਣ ਜਾਂ ਅਨਿਰੰਤਰ, ਜੋ ਕੁਆਂਟਮ ਨੰਬਰਾਂ ਨੂੰ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ, ਦਬਾ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ। ਫਰਮਾ:Math ਦਾ ਇੱਕ ਮੁੱਲ ਪ੍ਰਸਤੁਤੀ ਮੁਤਾਬਿਕ ਨਿਰਭਰ ਕਰਦਾ ਹੋਇਆ ਇੱਕ ਤੋਂ ਜਿਆਦਾ ਵਾਰ ਵੀ ਹੋ ਸਕਦਾ ਹੈ। ਫਰਮਾ:ਹੋਰ ਜਾਣਕਾਰੀ
ਗੈਰ-ਸਾਪੇਖਿਕ ਅਤੇ ਸਾਪੇਖਿਕ ਹੈਮਿਲਟੋਨੀਅਨ
ਫਰਮਾ:Main article ਕਿਸੇ ਪੁਟੈਂਸ਼ਲ ਅੰਦਰ ਕਿਸੇ ਕਣ ਵਾਸਤੇ ਕਲਾਸੀਕਲ ਹੈਮਿਲਟੋਨੀਅਨ, ਕਾਇਨੈਟਿਕ ਐਨਰਜੀ ਫਰਮਾ:Math ਅਤੇ ਪੁਟੈਂਸ਼ਲ ਐਨਰਜੀ ਫਰਮਾ:Math ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨਾਲ ਸ਼੍ਰੋਡਿੰਜਰ ਤਸਵੀਰ ਅੰਦਰ ਇਹ ਕੁਆਂਟਮ ਓਪਰੇਟਰ ਸਬੰਧਤ ਹੁੰਦੇ ਹਨ:
ਅਤੇ ਇਸਨੂੰ ਉੱਪਰ ਲਿਖੀ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਵਿੱਚ ਭਰਨ ਨਾਲ ਵੇਵ ਫੰਕਸ਼ਨ ਵਾਸਤੇ ਇੱਕ ਗੈਰ-ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਇਕੁਏਸ਼ਨ ਮਿਲਦੀ ਹੈ: ਜੋ ਵਿਧੀ ਇੱਕ ਸਰਲ ਸਮੀਕਰਨ ਦਾ ਇੱਕ ਸਿੱਧੀ ਬਦਲ ਹੈ। ਇਸ ਤੋਂ ਉਲਟ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਇਹ ਇੰਨੀ ਅਸਾਨ ਨਹੀਂ ਹੈ: ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਇਕੁਏਸ਼ਨ ਐਨਰਜੀ ਅੰਦਰ ਦੋਘਾਤੀ (ਕੁਆਡ੍ਰੈਟਿਕ) ਹੁੰਦੀ ਹੈ ਅਤੇ ਮੋਮੈਂਟਮ ਸਮੱਸਿਆਵਾਂ ਪੈਦਾ ਕਰਦਾ ਹੈ। ਮੂਲ ਸੈਟਿੰਗ:
ਕਈ ਕਾਰਨਾਂ ਕਰਕੇ ਮਦਦਗਾਰ ਨਹੀਂ ਰਹਿੰਦੀ। ਓਪਰੇਟਰਾਂ ਦਾ ਵਰਗਮੂਲ ਉਵੇਂ ਨਹੀਂ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਜਿਵੇਂ ਇਹ ਹੁੰਦਾ ਹੈ; ਇਸਨੂੰ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਤੋਂ ਪਹਿਲਾਂ ਕਿਸੇ ਪਾਵਰ ਸੀਰੀਜ਼ ਅੰਦਰ ਫੈਲਾਉਣਾ ਪੈਂਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਹਰੇਕ ਰਕਮ ਨੂੰ ਇੱਕ ਪਾਵਰ ਤੱਕ ਵਧਾਉਣ ਤੇ, ਇਹ ਫਰਮਾ:Math ਉੱਤੇ ਕ੍ਰਿਆ ਕਰ ਸਕਦਾ ਹੈ। ਪਾਵਰ ਸੀਰੀਜ਼ ਦੇ ਇੱਕ ਨਤੀਜੇ ਵਜੋਂ, ਸਪੇਸਟਾਈਮ ਡੈਰੀਵੇਟਿਵ ਪੂਰੀ ਤਰਾਂ ਅਸਮਰੂਪ ਹੁੰਦੇ ਹਨ: ਸਪੇਸ ਡੈਰੀਵੇਟਿਵ ਅਨੰਤ-ਵਿਵਸਥਾ ਵਿੱਚ ਹੁੰਦੇ ਹਨ ਪਰ ਸਮਾਂ ਡੈਰੀਵੇਟਿਵ ਸਿਰਫ ਪਹਿਲੀ ਵਿਵਸਥਾ ਤੱਕ ਰਹਿੰਦੇ ਹਨ, ਜੋ ਚੰਗੇ ਨਹੀਂ ਲਗਦੇ ਅਤੇ ਪ੍ਰੇਸ਼ਾਨ ਕਰਦੇ ਹਨ। ਇੱਕ ਵਾਰ ਫੇਰ ਤੋਂ, ਐਨਰਜੀ ਓਪਰੇਟਰ ਦੀ ਗੈਰ-ਸਥਿਰਤਾ ਦੀ ਸਮੱਸਿਆ ਹੁੰਦੀ ਹੈ, ਜੋ ਵਰਗਮੂਲ ਬਰਾਬਰ ਹੋਣ ਕਰਕੇ ਸਥਿਰ ਨਹੀਂ ਹੁੰਦੇ। ਇੱਕ ਹੋਰ ਸਮੱਸਿਆ, ਜੋ ਪੂਰੀ ਤਰਾਂ ਸਪਸ਼ਟ ਨਹੀਂ ਹੈ ਅਤੇ ਗੰਭੀਰ ਸਮੱਸਿਆ ਹੈ, ਇਹ ਹੈ ਕਿ ਇਸਨੂੰ ਗੈਰਸਥਾਨਿਕ ਹੋਣਾ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਇੱਥੋਂ ਤੱਕ ਕਿ ਕਾਰਣਾਤਮਿਕਤਾ (ਕੈਜ਼ੂਅਲਟੀ) ਦੀ ਉਲੰਘਣਾ ਕਰਦਾ ਵੀ ਸ਼ਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: ਜੇਕਰ ਕੋਈ ਕਣ ਸ਼ੁਰੂਆਤੀ ਤੌਰ ਤੇ ਕਿਸੇ ਬਿੰਦੂ ਫਰਮਾ:Math ਉੱਤੇ ਸਥਾਨਬੱਧ ਕੀਤਾ ਗਿਆ ਹੋਵੇ ਕਿ ਫਰਮਾ:Math ਸੀਮਤ ਹੋਵੇ ਅਤੇ ਹੋਰ ਸਭ ਜਗਹ ਜ਼ੀਰੋ ਰਹੇ, ਤਾਂ ਕਿਸੇ ਬਾਦ ਦੇ ਸਮੇਂ ਤੇ ਇਕੁਏਸ਼ਨ ਹਰੇਕ ਸਥਾਨ ਤੇ ਡੀਲੋਕਲਾਇਜ਼ੇਸ਼ਨ (ਸਥਾਂਤਰਨ) ਫਰਮਾ:Math ਦਾ ਅਨੁਮਾਨ ਲਗਾਉਂਦੀ ਹੈ, ਇੱਥੋਂ ਤੱਕ ਕਿ ਫਰਮਾ:Math ਲਈ ਵੀ ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਕਣ ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ ਕਿਸੇ ਪ੍ਰਕਾਸ਼ ਦੀ ਤਰੰਗ ਦੇ ਪਹੁੰਚਣ ਤੋਂ ਪਹਿਲਾਂ ਵੀ ਪਹੁੰਚ ਸਕਦਾ ਹੈ। ਇਸਦਾ ਇਲਾਜ ਇੱਕ ਵਾਧੂ ਰੋਕਥਾਮ ਫਰਮਾ:Math.[11] ਲਗਾ ਕੇ ਹੀ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਹੈਮਿਲਟੋਨੀਅਨ ਅੰਦਰ ਸਪਿੱਨ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਦੀ ਸਮੱਸਿਆ ਵੀ ਰਹਿੰਦੀ ਹੈ, ਜੋ ਗੈਰ-ਸਾਪੇਖਿਕ ਸ਼੍ਰੋਡਿੰਜਰ ਥਿਊਰੀ ਦਾ ਅਨੁਮਾਨ ਨਹੀਂ ਹੈ। ਸਪਿੱਨ-ਯੁਕਤ ਕਣ ਫਰਮਾ:Math ਦੀਆਂ ਯੂਨਿਟਾਂ ਵਿੱਚ ਕੁਆਂਟਾਇਜ਼ ਕੀਤੀ ਹੋਈ ਇੱਕ ਸਬੰਧਤ ਸਪਿੱਨ ਚੁੰਬਕੀ ਮੋਮੈਂਟ ਰੱਖਦੇ ਹਨ, ਜਿਸਨੂੰ ਬੋਹਰ ਮੈਗਨੇਟੌਨ ਕਹਿੰਦੇ ਹਨ:[12][13]
ਸੁਤੰਤਰ ਕਣਾਂ ਲਈ ਕਲੇਇਨ-ਜੌਰਡਨ ਅਤੇ ਡੀਰਾਕ ਸਮੀਕਰਨਾਂ
ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਸਬੰਧ ਵਿੱਚ ਐਨਰਜੀ ਅਤੇ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਮੁੱਲ ਭਰਨਾ ਪਹਿਲੀ ਨਜ਼ਰ ਵਿੱਚ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਪ੍ਰਾਪਤ ਕਰਨਾ ਦੱਸਦਾ ਲਗਦਾ ਹੈ:[14]
ਅਤੇ ਬਹੁਤ ਸਾਰੇ ਲੋਕਾਂ ਦੁਆਰਾ ਖੋਜਿਆ ਸੀ ਕਿਉਂਕਿ ਇਸਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਦਾ ਤਰੀਕਾ ਬਹੁਤ ਸਿੱਧਾ ਹੀ ਸੀ, ਇਹ 1925 ਵਿੱਚ ਸ਼੍ਰੋਡਿੰਜਰ ਨੇ ਨੋਟ ਕੀਤਾ ਜਦੋਂ ਅਜੇ ਉਸਨੇ ਗੈਰ-ਸਾਪੇਖਿਕ ਇਕੁਏਸ਼ਨ ਨਹੀਂ ਖੋਜੀ ਸੀ, ਅਤੇ 1927 ਵਿੱਚ ਕਲੇਇਨ ਜੌਰਡਨ ਨੇ ਵੀ ਨੋਟ ਕੀਤਾ, ਜਿਹਨਾਂ ਨੇ ਇਕੁਏਸ਼ਨ ਵਿੱਚ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਸ਼ਾਮਿਲ ਕਰ ਦਿੱਤੀਆਂ। ਇਹ ਸਪੇਖਿਕ ਤੌਰ ਤੇ ਸਥਿਰ ਹੈ, ਫੇਰ ਵੀ ਇਹ ਇਕੁਏਸ਼ਨ ਇਕੱਲੀ ਹੀ ਕੁੱਝ ਕਾਰਣਾਂ ਕਰਕੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਜਰੂਰਤ ਜਿੰਨੀ ਕਾਫੀ ਬੁਨਿਆਦ ਨਹੀਂ ਹੈ; ਇੱਕ ਕਾਰਣ ਇਹ ਹੈ ਕਿ ਨੈਗਟਿਵ-ਐਨਰਜੀ ਅਵਸਥਾਵਾਂ ਹੱਲ ਬਣਦੀਆਂ ਹਨ,[2][15] ਦੂਜਾ ਕਾਰਣ ਡੈਂਸਟੀ (ਅੱਗੇ ਲਿਖੀ ਗਈ ਹੈ) ਹੈ, ਅਤੇ ਇਹ ਇਕੁਏਸ਼ਨ ਜਿਵੇਂ ਹੈ ਉਸਤਰਾਂ ਸਿਰਫ ਸਪਿੱਨਹੀਣ ਕਣਾਂ ਤੇ ਹੀ ਲਾਗੂ ਹੁੰਦੀ ਹੈ। ਇਸ ਇਕੁਏਸ਼ਨ ਨੂੰ ਕਿਸਮ ਦੀ ਕਿਸਮ ਵਿੱਚ ਤੋੜ ਕੇ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ:[16][17]
ਜਿੱਥੇ ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math ਸਿਰਫ ਨੰਬਰ ਜਾਂ ਵੈਕਟਰ ਹੀ ਨਹੀਂ ਹਨ, ਸਗੋਂ 4 × 4 ਹਰਮਿਸ਼ੀਅਨ ਮੈਟ੍ਰਿਕਸ ਹਨ ਜੋ ਫਰਮਾ:Math ਵਾਸਤੇ ਐਂਟੀਕਮਿਊਟ ਹੋਣੇ ਮੰਗਦੇ ਹਨ:
ਅਤੇ ਆਇਡੈਂਟਿਟੀ ਮੈਟ੍ਰਕਿਸ ਪ੍ਰਤਿ ਵਰਗ ਹੋਣਾ ਮੰਗਦੇ ਹਨ:
ਤਾਂ ਜੋ ਮਿਸ਼ਰਿਤ ਦੂਜੇ ਦਰਜੇ ਦੇ ਡੈਰੀਵੇਟਿਵਾਂ ਵਾਲੀਆਂ ਰਕਮਾਂ ਮੁੱਕ ਜਾਣ ਜਦੋਂਕਿ ਦੂਜੇ ਦਰਜੇ ਵਾਲੇ ਡੈਰੀਵੇਟਿਵ ਵਾਲੀਆੰ ਰਕਮਾਂ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਅੰਦਰ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਬਚ ਜਾਣ। ਪਹਿਲੀ ਵਿਵਸਥਾ:
ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਹੈ। ਦੂਜਾ ਹਿੱਸਾ ਵੀ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਹੀ ਹੈ, ਪਰ ਕਿਸੇ ਨੈਗਟਿਵ ਪੁੰਜ ਵਾਲੇ ਕਣ ਲਈ ਹੈ।[16] ਹਰੇਕ ਹਿੱਸਾ (ਫੈਕਟਰ) ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ ਇਨਵੇਰੀਅੰਟ (ਸਥਿਰ) ਰਹਿੰਦਾ ਹੈ। ਇਸਦਾ ਕਾਰਣ ਇੱਕ ਹੋਰ ਤਰਾਂ ਵੀ ਸਾਬਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: ਉੱਪ ਵਾਲੀ ਕਿਸਮ ਅੰਦਰ ਹੈਮਿਲਟੋਨੀਅਨ ਇਸ ਤਰਾਂ ਲਓ, ਜਿਵੇਂ ਡੀਰਾਕ ਨੇ 1928 ਵਿੱਚ ਲਿਆ ਸੀ, ਫੇਰ ਇਕੁਏਸ਼ਨ ਨੂੰ ਓਪਰੇਟਰਾਂ ਫਰਮਾ:Math ਦੇ ਹੋਰ ਹਿੱਸੇ ਦੁਆਰਾ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਗੁਣਾ ਕਰ ਦੇਵੋ, ਅਤੇ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਨਾਲ ਤੁਲਨਾ ਕਰਨ ਤੇ ਰੋਕਥਾਮ ਦੇ ਰੂਪ ਵਿੱਚ ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math ਨਿਰਧਾਰਤ ਹੋ ਜਾਂਦੇ ਹਨ। ਪੌਜ਼ਟਿਵ ਪੁੰਜ ਵਾਲੀ ਇਕੁਏਸ਼ਨ ਬੇਗਹਿਚਕ ਤੌਰ ਤੇ ਵਰਤਣੀ ਜਾਰੀ ਰੱਖੀ ਜਾ ਸਕਦੀ ਹੈ। ਫਰਮਾ:Math ਨਾਲ ਗੁਣਾ ਹੋਣ ਵਾਲ਼ੇ ਮੈਟ੍ਰਿਕਸ ਸੁਝਾਉਂਦੇ ਹਨ ਕਿ ਇਹ ਕੋਈ ਸਕੇਲਰ ਵੇਵ ਫੰਕਸ਼ਨ ਨਹੀਂ ਹੁੰਦਾ ਜਿਵੇਂ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਵਿੱਚ ਪ੍ਰਵਾਨਗੀ ਹੈ, ਸਗੋਂ ਇੱਕ ਚਾਰ-ਕੰਪੋਨੈਂਟਾਂ ਵਾਲੀ ਇਕਾਈ (ਚੀਜ਼) ਹੁੰਦੀ ਹੈ। ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਅਜੇ ਵੀ ਨੈਗਟਿਵ ਐਨਰਜੀ ਵਾਲੇ ਹੱਲ ਦਿੰਦੀ ਹੈ,[6][18] ਇਸਲਈ ਡੀਰਾਕ ਨੇ ਸਵੈ-ਸਿੱਧ ਕੀਤਾ ਕਿ ਨੈਗਟਿਵ ਐਨਰਜੀ ਅਵਸਥਾਵਾਂ ਹਮੇਸ਼ਾ ਹੀ ਘੇਰੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ, ਕਿਉਂਕਿ ਪੌਲੀ ਸਿਧਾਂਤ ਮੁਤਾਬਿਕ, ਐਟਮਾਂ ਵਿੱਚ ਪੌਜ਼ਟਿਵ ਤੋਂ ਨੈਗਟਿਵ ਐਨਰਜੀ ਲੈਵਲਾਂ ਤੱਕ ਦੀਆਂ ਇਲੈਕਟ੍ਰੌਨਿਕ ਤਬਦੀਲੀਆਂ ਮਨਾ ਹੁੰਦੀਆਂ ਹਨ। ਜਿਆਦਾ ਜਾਣਕਾਰੀ ਲਈ ਡੀਰਾਕ ਸਾਗਰ ਦੇਖੋ।
ਜਿੱਥੇ ਫਰਮਾ:Math, ਕਣ ਵਾਸਤੇ (ਸਪਿੱਨ) g-ਹਿੱਸਾ (ਫੈਕਟਰ) ਹੁੰਦਾ ਹੈ, ਅਤੇ ਫਰਮਾ:Math, ਸਪਿੱਨ ਓਪਰੇਟਰ ਹੁੰਦਾ ਹੈ, ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਨਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰਦੇ ਹਨ। ਕਿਸੇ ਬਾਹਰੀ ਤੌਰ ਤੇ ਲਾਗੂ ਕੀਤੀ ਗਈ ਮੈਗਨੈਟਿਕ ਫੀਲਡ ਫਰਮਾ:Math ਅੰਦਰ ਕਿਸੇ ਕਣ ਵਾਸਤੇ, ਪਰਸਪਰ ਕ੍ਰਿਆ ਰਕਮ[19]
ਉੱਪਰ ਲਿਖੇ ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੈਮਿਲਟੋਨੀਅਨ ਵਿੱਚ ਜੋੜਨੀ ਪੈਂਦੀ ਹੈ। ਇਸ ਤੋਂ ਉਲਟ, ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੈਮਿਲਟੋਨੀਅਨ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਸਬੰਧ ਤੇ ਜੋਰ ਦੇਣ ਦੀ ਮੰਗ ਦੇ ਰੂਪ ਵਿੱਚ ਸਪਿੱਨ ਨੂੰ ਖੁਦ-ਬ-ਖੁਦ (ਐਟੋਮੈਟਿਕਲੀ) ਪੇਸ਼ ਕਰ ਦਿੰਦਾ ਹੈ।[20] ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੈਮਿਲਟੋਨੀਅਨ ਹੇਠਾਂ ਲਿਖੇ ਕਾਰਨ ਕਰਕੇ ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ ਮਿਲਦਾ ਜੁਲਦਾ ਹੈ; ਰੈਸਟ ਮਾਸ ਅਤੇ ਬਾਹਰੀ ਤੌਰ ਤੇ ਲਾਗੂ ਕੀਤੀਆਂ ਗਈਆਂ ਫੀਲਡਾਂ ਨਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆ ਵਾਲੀਆਂ ਰਕਮਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਦੀਆਂ ਰਕਮਾਂ ਹਨ, ਜੋ ਕਲਾਸੀਕਲ ਪੁਟੈਂਸ਼ਲ ਐਨਰਜੀ ਰਕਮ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਹੈ, ਅਤੇ ਕਲਾਸੀਕਲ ਕਾਇਨੈਟਿਕ ਐਨਰਜੀ ਰਕਮ ਵਰਗੀਆਂ ਮੋਮੈਂਟਮ ਰਕਮਾਂ ਨਾਲ ਵੀ ਮਿਲਦੀਆਂ ਹਨ। ਇੱਕ ਪ੍ਰਮੁੱਖ ਫਰਕ ਇਹ ਰਹਿੰਦਾ ਹੈ ਕਿ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੈਮਿਲਟੋਨੀਅਨ ਮੈਟ੍ਰਿਕਸਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਸਪਿੱਨ ਓਪਰੇਟਰ ਰੱਖਦੇ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚ ਸਪਿੱਨ ਇੰਡੈਕਸ ਫਰਮਾ:Math ਉੱਤੇ ਮੈਟ੍ਰਿਕਸ ਗੁਣਨਫਲ ਚਲਦਾ ਹੈ, ਇਸਲਈ ਆਮਤੌਰ ਤੇ ਇੱਕ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੈਮਿਲਟੋਨੀਅਨ:
ਸਪੇਸ, ਸਮੇਂ, ਅਤੇ ਮੋਮੈਂਟਮ ਅਤੇ ਸਪਿੱਨ ਓਪਰੇਟਰਾਂ ਦਾ ਇੱਕ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ।
ਘਣਤਾਵਾਂ ਅਤੇ ਕਰੰਟ
ਗੈਰ-ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਵੇਵ ਫੰਕਸ਼ਨ ਫਰਮਾ:Math ਦਾ ਸਕੁਏਅਰ-ਮੌਡੂਲਸ, ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਫੰਕਸ਼ਨ ਫਰਮਾ:Math ਦਿੰਦਾ ਹੈ। ਇਹ ਲੱਗਪਗ 1927 ਵਿੱਚ ਦਿੱਤੀ ਕੌਪਨਹਾਗਨ ਵਿਆਖਿਆ ਹੈ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਜਿੱਥੇ ਫਰਮਾ:Math ਇੱਕ ਵੇਵ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਉੱਥੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਆਖਿਆ ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਅੰਦਰਲੀ ਵਿਆਖਿਆ ਵਾਂਗ ਨਹੀਂ ਹੈ। ਕੁੱਝ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ ਕਿਸੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਫਰਮਾ:Math ਜਾਂ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਰੰਟ ਫਰਮਾ:Math (ਜਿਸਦਾ ਸਹੀ ਅਰਥ “ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਰੰਟ ਡੈਂਸਟੀ” ਹੁੰਦਾ ਹੈ) ਦਾ ਅਨੁਮਾਨ ਨਹੀਂ ਲਗਾਉਂਦੀਆਂ ਕਿਉਂਕਿ ਇਹ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਪੌਜ਼ਟਿਵ ਨਿਸ਼ਚਿਤ ਫੰਕਸ਼ਨ ਨਹੀਂ ਹੁੰਦੀਆਂ। ਪਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਅਜਿਹਾ ਕਰਦੀ ਹੈ:[21]
ਜਿੱਥੇ ਡੈਗਰ ਵਾਲਾ ਚਿੰਨ੍ਹ ਹਰਮਿਸ਼ੀਅਨ ਅਡਜੋਆਇੰਟ (ਵਿਦਵਾਨ ਅਕਸਰ ਡੀਰਾਕ ਅਡਜੋਆਇੰਟ ਵਾਸਤੇ ਫਰਮਾ:Math ਲਿਖਦੇ ਹਨ) ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਅਤੇ ਫਰਮਾ:Math, ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਚਾਰ-ਕਰੰਟ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਜਦੋਂ ਕਿ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਅਜਿਹਾ ਨਹੀਂ ਕਰਦੀ:[22]
ਜਿੱਥੇ ਫਰਮਾ:Math, ਚਾਰ-ਗ੍ਰੇਡੀਅੰਟ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math, ਦੋਵਾਂ ਦੀਆਂ ਹੀ ਸ਼ੁਰੂਆਤੀ ਕੀਮਤਾਂ ਸੁਤੰਤਰਤਾ ਨਾਲ ਚੁਣੀਆਂ ਜਾ ਸਕਦੀਆਂ ਹਨ, ਇਸਲਈ ਡੈਂਸਟੀ ਨੇਗਟਿਵ ਹੋ ਸਕਦੀ ਹੈ। ਇਸਦੀ ਜਗਹ, ਪਹਿਲੀ ਨਜ਼ਰ ਵਿੱਚ ਜੋ ਨਜ਼ਰ ਆਉਂਦਾ ਹੈ, ਉਹ ਇਹ ਹੈ ਕਿ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਅਤੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਰੰਟ ਨੂੰ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਨਾਲ ਗੁਣਾ ਕਰਨ ਤੇ ਚਾਰਜ ਡੈਂਸਟੀ ਅਤੇ ਕਰੰਟ ਡੈਂਸਟੀ ਦੇ ਤੌਰ ਤੇ ਪੁਨਰ-ਵਿਆਖਿਅਤ ਕਰਨਾ ਪੈਂਦਾ ਹੈ। ਫੇਰ, ਵੇਵ ਫੰਕਸ਼ਨ ਫਰਮਾ:Math ਬਿਲਕੁਲ ਵੀ ਵੇਵ ਫੰਕਸ਼ਨ ਨਹੀੰ ਰਹਿੰਦਾ, ਪਰ ਕੋਈ ਫੀਲਡ ਦੇ ਰੂਪ ਵਿੱਚ ਵਿਆਖਿਅਤ ਹੁੰਦਾ ਹੈ।[11] ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਦੀ ਡੈਂਸਟੀ ਅਤੇ ਕਰੰਟ ਹਮੇਸਾਂ ਹੀ ਇੱਕ ਨਿਰੰਤਰਤਾ ਸਮੀਕਰਨ (ਕੰਟੀਨਿਊਟੀ ਇਕੁਏਸ਼ਨ ਦੀ ਪਾਲਣਾ ਕਰਦੇ ਹਨ:
ਕਿ ਜਿਵੇਂ ਚਾੇਰਜ ਇੱਕ ਸੁਰੱਖਿਅਤ ਮਾਤਰਾ (ਕੰਜ਼੍ਰਵਡ ਕੁਆਂਟਿਟੀ) ਹੋਵੇ। ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਡੈਂਸਟੀ ਅਤੇ ਕਰੰਟ ਵੀ ਇੱਕ ਨਿਰੰਰਤ੍ਰਤਾ ਇਕੁਏਸ਼ਨ ਤੇ ਖਰੇ ਉਤਰਦੇ ਹਨ ਕਿਉਂਕਿ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸੁਰੱਖਿਅਤ ਰਹਿੰਦੀ ਹੈ, ਫੇਰ ਵੀ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਅੰਦਰ ਸਿਰਫ ਇਹੀ ਕੁੱਝ ਹੀ ਸੰਭਵ ਹੁੰਦਾ ਹੈ।
ਸਪਿੱਨ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਤੌਰ ਤੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰਦੇ ਕਣ
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਫੰਕਸ਼ਨ ਇਕੁਏਸ਼ਨਾਂ ਅੰਦਰ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨਾ ਸਰਵ ਸਧਾਰਨ ਤੌਰ ਤੇ ਕਠਿਨ ਹੁੰਦਾ ਹੈ। ਘੱਟੋ-ਘੱਟ ਮੇਲ (ਮਿਨੀਮਲ ਕਪਲਿੰਗ) ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪਰਸਪਰ ਕ੍ਰਿਆ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਦਾ ਇੱਕ ਸਰਲ ਤਰੀਕਾ ਹੈ। ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਅੰਦਰ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਫਰਮਾ:Math ਚਾਰਜ ਵਾਲੇ ਇੱਕ ਕਣ ਵਾਸਤੇ, ਜੋ ਮੈਗਨੈਟਿਕ ਫੀਲਡ ਫਰਮਾ:Math, ਅਤੇ ਇਲੈਕਟ੍ਰਿਕ ਸਕੇਲਰ ਪੁਟੈਂਸ਼ਲ ਫਰਮਾ:Math ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਮੈਗਨੈਟਿਕ ਵੈਕਟਰ ਪੁਟੈਂਸ਼ਲ ਫਰਮਾ:Math ਦੁਆਰਾ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਹੈ:[23]
ਜਿੱਥੇ ਫਰਮਾ:Math ਇੱਕ ਚਾਰ-ਮੋਮੈਂਟਮ ਹੈ ਜੋ ਇੱਕ ਸਬੰਧਤ 4-ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ, ਅਤੇ ਫਰਮਾ:Math ਫੋਰ-ਪੁਟੇਂਸ਼ਲ ਰੱਖਦਾ ਹੈ। ਅੱਗੇ, ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੀਮਾ, ਨਿਸ਼ਚਿਤ ਸੀਮਾਵਾਂ ਵਾਲੇ ਮਾਮਲਿਆਂ ਵੱਲ ਇਾਰਾ ਕਰਦੀਆਂ ਹਨ:
ਯਾਨਿ ਕਿ, ਕਣ ਦੀ ਕੁੱਲ ਊਰਜਾ ਲੱਗਪਗ ਛੋਟੇ ਇਲੈਕਟ੍ਰਿਕ ਪੁਟੈਂਸਲਾਂ ਵਾਸਤੇ ਰੈਸਟ ਐਨਰਜੀ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਮੋਮੈਂਟਮ ਲੱਗਪਗ ਕਲਾਸੀਕਲ ਮਕੈਨਿਕਸ ਰਹਿੰਦਾ ਹੈ।
ਸਪਿੱਨ-0
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ, ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਘੱਟੋ-ਘੱਟ ਮੇਲ ਕਰਨ ਵਾਲੀ ਵਿਧੀ ਨੂੰ ਮੰਨਦੀ ਹੈ;
ਜਿਸ ਮਾਮਲੇ ਵਿੱਚ ਚਾਰਕ ਜ਼ੀਰੋ ਹੁੰਦਾ ਹੈ, ਸਮੀਕਰਨ ਮਮੂਲੀ ਤੌਰ ਤੇ ਸੁਤੰਤਰ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਤੱਕ ਘਟ ਕੇ ਸੰਖੇਪ ਹੋ ਜਾਂਦੀ ਹੈ ਤਾਂ ਜੋ ਗੈਰ-ਸਿਫਰ ਚਾਰਜ ਨੂੰ ਥੱਲੇ ਮੰਨਿਆ ਜਾਵੇ। ਇਹ ਇੱਕ ਸਕੇਲਰ ਇਕੁਏਸ਼ਨ ਹੁੰਦੀ ਹੈ ਜੋ ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਦੀ ਘਟਾਈ-ਨਾ-ਜਾ-ਸਕਣ ਵਾਲੀ ਇੱਕ-ਅਯਾਮੀ ਸਕੇਲਰ [[ਲੌਰੱਟਜ਼ ਗਰੁੱਪ ਦੀ ਪ੍ਰਸਤੁਤੀ ਥਿਊਰੀ|ਫਰਮਾ:Math]] ਪ੍ਰਸਤੁਤੀ ਹੈ। ਇਸਦਾ ਅਰਥ ਇਹ ਹੋਇਆ ਕਿ ਇਸਦੇ ਹੱਲ ਫਰਮਾ:Math ਪ੍ਰਸਤੁਤੀਆਂ ਦੇ ਇੱਕ ਸਿੱਧੇ ਜੋੜ ਨਾਲ ਸਬੰਧ ਰੱਖਣਗੇ। ਜਿਹੜੇ ਹੱਲ ਘਟਾਈ-ਨਾ-ਜਾ-ਸਕਣ-ਯੋਗ ਫਰਮਾ:Math ਪ੍ਰਸਤੁਤੀ ਨਾਲ ਸਬੰਧਤ ਨਹੀਂ ਹੁੰਦੇ ਉਹ ਦੋ ਜਾਂ ਹੋਰ ਜਿਆਦਾ ਸੁਤੰਤਰ ਕੰਪੋਨੈਂਟ ਰੱਖਣਗੇ। ਅਜਿਹੇ ਹੱਲ ਆਮਤੌਰ ਤੇ ਗੈਰ-ਸਿਫਰ ਸਪਿੱਬਨ ਵਾਲੇ ਕਣਾਂ ਨੂੰ ਨਹੀਂ ਦਰਸਾਉਂਦੇ ਕਿਉਂਕਿ ਸਪਿੱਨ-ਕੰਪੋਨੈਂਟ ਸੁਤੰਤਰ ਨਹੀਂ ਹੁੰਦੇ। ਇਸਦੇ ਲਈ ਇੱਕ ਹੋਰ ਰੋਕਥਾਮ ਲਗਾਉਣੀ ਹੀ ਪੈਂਦੀ ਹੈ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਦੇਖੋ ਥੱਲੇ, ਸਪਿੱਨ ½ ਵਾਸਤੇ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ। ਇਸ ਤਰ੍ਹਾਂ, ਜੇਕਰ ਕੋਈ ਸਿਸਟਮ ਸਿਰਫ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਨੂੰ ਹੀ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੋਵੇ, ਤਾਂ ਇਸਨੂੰ ਜ਼ੀਰੋ ਸਪਿੱਨ ਵਾਲੇ ਕਿਸੇ ਸਿਸਟਮ ਦੇ ਤੌਰ ਤੇ ਹੀ ਵਿਆਖਿਅਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਨੂੰ ਮੈਕਸਵੈੱਲ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਮੁਤਾਬਿਕ ਕਲਾਸੀਕਲ ਤੌਰ ਤੇ ਹੀ ਲਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਕਣ ਇੱਕ ਅਜਿਹੇ ਵੇਵ ਫੰਕਸ਼ਨ ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਕਲੇਇਨ-ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਦਾ ਹੱਲ ਹੁੰਦਾ ਹੈ। ਇਹ ਇਕੁਏਸ਼ਨ, ਜਿਵੇਂ ਹੁੰਦੀ ਹੈ, ਹਮੇਸ਼ਾ ਹੀ ਲਾਭਦਾਇਕ ਨਹੀਂ ਹੁੰਦੀ, ਕਿਉਂਕਿ ਪੁੰਜਯੁਕਤ ਸਪਿੱਨਹੀਣ ਕਣ, ਜਿਵੇਂ π-ਮੀਜ਼ੌਨ, ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪਰਸਪਰ ਕ੍ਰਿਆ ਤੋਂ ਇਲਾਵਾ ਬਹੁਤ ਜਿਆਦਾ ਤਾਕਤਵਰ ਪਰਸਪਰ ਕ੍ਰਿਆ ਵੀ ਅਨੁਭਵ ਕਰਦੇ ਹਨ। ਫੇਰ ਵੀ, ਇਹ, ਹੋਰ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦੀ ਗੈਰ-ਹਾਜ਼ਰੀ ਵਿੱਚ ਚਾਰਜ ਕੀਤੇ ਸਪਿੱਨਹੀਣ ਬੋਸੌਨਾਂ ਨੂੰ ਸਹੀ ਤਰੀਕੇ ਨਾਲ ਦਰਸਾਉਂਦੀ ਹੈ।
ਕਲੇਇਨ ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਕਿਸੇ ਬਾਹਰੀ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪੁਟੈਂਸ਼ਲ ਅੰਦਰ ਸਪਿੱਨਹੀਣ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਬੋਸੌਨਾਂ ਤੇ ਲਾਗੂ ਰਹਿੰਦੀ ਹੈ।[2] ਇਸ ਤਰ੍ਹਾਂ, ਇਹ ਇਕੁਏਸ਼ਨ ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਅੰਦਰ ਕਿਸੇ ਸਪਿੱਨਹੀਣ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕਣ ਵਾਸਤੇ ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਤੱਕ ਘਟ ਕੇ ਸੰਖੇਪ ਹੋ ਜਾਂਦੀ ਹੈ:[19]
ਸਪਿੱਨ-½
ਫਰਮਾ:Main article ਗੈਰ ਸਾਪੇਖਿਕ ਤੌਰ ਤੇ, ਕਿਸੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਕ ਫੀਲਡ ਅੰਦਰ ਕਣਾਂ ਲਈ 1927 ਵਿੱਚ ਪੌਲੀ ਦੁਆਰਾ ਪੌਲੀ ਇਕੁਏਸ਼ਨ ਵਿੱਚ ਸਪਿੱਨ ਨੂੰ ਪਹਿਲੀ ਵਾਰ ਫੀਨੋਮੀਨੌਲੌਜੀਕਲ (ਵਰਤਾਰਿਕ) ਤੌਰ ਤੇ 2 × 2 ਪੌਲੀ ਮੈਟ੍ਰਿਕਸਾਂ, ਦੇ ਸ਼ਬਦਾਂ (ਅਰਥਾਂ):
ਵਿੱਚ ਪੇਸ਼ ਕੀਤਾ ਗਿਆ ਸੀ, ਅਤੇ ਫਰਮਾ:Math ਸਿਰਫ ਕੋਈ ਸਕੇਲਰ ਵੇਵ ਫੰਕਸ਼ਨ ਹੀ ਨਹੀਂ ਹੈ ਜਿਵੇਂ ਗੈਰ-ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸ਼੍ਰੋਡਿੰਜਰ ਇਕੁਏਸ਼ਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ, ਸਗੋਂ ਇੱਕ ਦੋ-ਕੰਪੋਨੈਂਟਾਂ ਵਾਲੀ ਸਪਿੱਨੌਰ ਫੀਲਡ ਹੁੰਦਾ ਹੈ।
ਜਿੱਥੇ ਸਬਸਕ੍ਰਿਪਟਾਂ ↑ ਅਤੇ ↓ ਸਪਿੱਨ ਅੱਪ (ਫਰਮਾ:Math) ਅਤੇ ਸਪਿੱਨ-ਡਾਊਨ (ਫਰਮਾ:Math) ਅਵਸਥਾਵਾਂ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀਆਂ ਹਨ[note 2]
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਮਿਨੀਮਲ ਕਪਲਿੰਗ ਨੂੰ ਵੀ ਸ਼ਾਮਿਲ ਕਰ ਸਕਦੀ ਹੈ, ਜੋ ਉੱਪਰ ਤੋਂ ਲੈ ਕੇ ਦੁਬਾਰਾ ਲਿਖੀ ਗਈ ਹੈ;
ਅਤੇ ਇਹ ਸਪਿੱਨ ਦਾ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਅਨੁਮਾਨ ਲਗਾਉਣ ਵਾਲੀ ਪਹਿਲੀ ਇਕੁਏਸ਼ਨ ਸੀ, ਜੋ 4 × 4 ਗਾਮਾ ਮੈਟ੍ਰਿਕਸਾਂ ਫਰਮਾ:Math ਦੀ ਇੱਕ ਲੜੀ ਹੈ।
ਇੱਕ 4 × 4 ਆਇਡੈਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦੇ ਹਨ ਜੋ ਐਨਰਜੀ ਓਪਰੇਟਰ (ਪੁਟੈਂਸ਼ਲ ਐਨਰਜੀ ਰਕਮ ਸਮੇਤ) ਨੂੰ ਪਹਿਲਾਂ ਹੀ ਗੁਣਾ ਕਰਦੇ ਹੋਏ, ਸਰਲਤਾ ਕਾਇਮ ਰੱਖਣ ਦੇ ਚੱਕਰ ਵਿੱਚ ਪ੍ਰੰਪ੍ਰਿਕ ਤੌਰ ਤੇ ਲਿਖੇ ਨਹੀਂ ਜਾਂਦੇ ਅਤੇ ਸਪਸ਼ਟ ਤੌਰ ਤੇ (ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, 1 ਨੰਬਰ ਵਾਂਗ ਸਮਝੇ ਜਾਂਦੇ ਹਨ)। ਇੱਥੇ ਫਰਮਾ:Math ਇੱਕ ਚਾਰ ਹਿੱਸਿਆਂ ਵਾਲੀ ਸਪਿੱਨੌਰ ਫੀਲਡ ਹੈ, ਜਿਸਨੂੰ ਪ੍ਰੰਪਰਿਕ ਤੌਰ ਤੇ ਦੋ ਦੋ-ਕੰਪੋਨੈਂਟ ਸਪਿੱਨੌਰਾਂ ਵਿੱਚ ਇਸ ਰੂਪ ਵਿੱਚ ਤੋੜ ਕੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ:[note 3]
2-ਸਪਿੱਨੌਰ ਫਰਮਾ:Math ਇੱਕ ਅਜਿਹੇ ਕਣ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ ਜੋ 4-ਮੋਮੈਂਟਮ ਫਰਮਾ:Math ਅਤੇ ਚਾਰਜ ਫਰਮਾ:Math ਅਤੇ ਦੋ ਸਪਿੱਨ ਅਵਸਥਾਵਾਂ (ਪਹਿਲਾਂ ਵਾਂਗ ਫਰਮਾ:Math) ਨਾਲ ਸਬੰਧ ਰੱਖਦਾ ਹੈ। ਬਾਕੀ ਹੋਰ 2-ਸਪਿੱਨੌਰ ਫਰਮਾ:Math ਇੱਕ ਮਿਲਦੇ ਜੁਲਦੇ ਅਜਿਹੇ ਕਣ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੇ ਹਨ ਜਿਸਦਾ ਪੁੰਜ ਅਤੇ ਸਪਿੱਨ ਅਵਸਥਾਵਾਂ ਉਹੀ ਰਹਿੰਦੀਆਂ ਹਨ, ਪਰ ਨੈਗਟਿਵ 4-ਮੋਮੈਂਟਮ ਫਰਮਾ:Math ਅਤੇ ਨੈਗਟਿਵ ਚਾਰਜ ਫਰਮਾ:Math ਹੁੰਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਨੈਗਟਿਵ ਐਨਰਜੀ ਅਵਸਥਾਵਾਂ, ਸਮਾਂ-ਪਲਟਿਆ ਮੋਮੈਂਟਮ, ਅਤੇ ਨਕਾਰਿਆ ਚਾਰਜ ਹੁੰਦਾ ਹੈ। ਇਹ ਕਿਸੇ ਕਣ (ਪਾਰਟੀਕਲ) ਅਤੇ ਉਸਦੇ ਸਬੰਧਤ ਐਂਟੀ-ਪਾਰਟੀਕਲ ਦੀ ਭਵਿੱਖਬਾਣੀ ਕਰਨ ਵਾਲੀ ਸਭ ਤੋਂ ਪਹਿਲੀ ਵਿਆਖਿਆ ਸੀ। ਇਹਨਾਂ ਸਪਿੱਨੌਰਾੰ ਦੇ ਹੋਰ ਵੇਰਵੇ ਵਾਸਤੇ ਦੇਖੋ ਡੀਰਾਕ ਸਪਿੱਨੌਰ ਅਤੇ ਬਾਇਸਪਿੱਨੌਰ।
ਗੈਰ ਸਾਪੇਖਿਕ (ਨੌਨ-ਰੀਲੇਟੀਵਿਸਟਿਕ) ਹੱਦ ਅੰਦਰ ਡਿਰਾਕ ਇਕੁਏਸ਼ਨ ਪੌਲੀ ਇਕੁਏਸ਼ਨ ਤੱਕ ਘਟ ਕੇ ਸੰਖੇਪ ਹੋ ਜਾਂਦੀ ਹੈ (ਕਾਰਣ ਜਾਣਨ ਲਈ ਦੇਖੋ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ)। ਢੁਕਵੇਂ ਇਲੈਕਟ੍ਰੋਸਟੈਟਿਕ ਪੁਟੈਂਸ਼ਲ ਤੇ ਫਰਮਾ:Math ਅਤੇ ਫਰਮਾ:Math ਸੈੱਟ ਕਰਕੇ ਜਦੋਂ ਇਸਨੂੰ ਕਿਸੇ ਇੱਕ ਇਲੈਕਟ੍ਰੌਨ ਐਟਮ ਜਾਂ ਆਇਨ ਤੇ ਲਾਗੂ ਕੀਤਾ ਜਾਂਦਾ ਹੈ, ਤਾਂ ਵਾਧੂ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਰਕਮਾਂ ਸਪਿੱਨ-ਔਰਬਿਟ ਪਰਸਪਰ ਕ੍ਰਿਆ, ਇਲੈਕਟ੍ਰੌਨ ਜਾਇਰੋਮੈਗਨੈਟਿਕ ਅਨੁਪਾਤ, ਅਤੇ ਡਾਰਵਿਨ ਰਕਮ ਦੇ ਤੌਰ ਤੇ ਸ਼ਾਮਿਲ ਹੁੰਦੀਆਂ ਹਨ। ਸਧਾਰਨ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਇਹਨਾਂ ਰਕਮਾਂ ਨੂੰ ਜਾਣਬੁੱਝ ਕੇ ਰੱਖਣਾ ਪੈਂਦਾ ਹੈ ਅਤੇ ਪਰਚ੍ਰਬੇਸ਼ਨ ਥਿਊਰੀ ਵਰਤਦੇ ਹੋਏ ਲਿਆ ਜਾਂਦਾ ਹੈ। ਇਹ ਪੌਜ਼ਟਿਵ ਊੇਰਜਾਵਾਂ ਫਾਈਨ ਸਟ੍ਰਕਚਰ ਵਾਸਤੇ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਜ਼ਿੰਮੇਵਾਰ ਹੁੰਦੀਆਂ ਹਨ।
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਪੁੰਜਹੀਣ ਕਣਾਂ ਵਾਸਤੇ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਘਟ ਕੇ ਇਹ ਬਣ ਜਾਂਦੀ ਹੈ:
ਜਿਸ ਵਿੱਚ ਸਭ ਤੋਂ ਪਹਿਲੀ ਰਕਮ ਵੇਇਲ ਇਕੁਏਸ਼ਨ ਹੈ, ਜੋ ਪੁੰਜਹੀਣ ਨਿਊਟ੍ਰੀਨੋਆਂ ਤੇ ਲਾਗੂ ਹੋਣਯੋਗ ਵਾਸਤੇ ਇੱਕ ਵਿਚਾਰਯੋਗ ਸਰਲਤਾ ਹੈ[24] ਇਸ ਵਕਤ ਇੱਥੇ ਇੱਕ 2 × 2 ਆਇਡੈਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਐਨਰਜੀ ਓਪਰੇਟਰ ਨੂੰ ਪਹਿਲਾਂ ਹੀ ਗੁਣਾ ਕੀਤਾ ਹੁੰਦਾ ਹੈ ਜੋ ਪ੍ਰੰਪਰਿਕ ਤੌਰ ਤੇ ਨਹੀਂ ਲਿਖਿਆ ਜਾਂਦਾ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਇਸਨੂੰ ਜ਼ੀਰੋ ਪੌਲੀ ਮੈਟ੍ਰਿਕਸ ਫਰਮਾ:Math ਦੇ ਤੌਰ ਤੇ ਲੈਣਾ ਲਾਭਦਾਇਕ ਰਹਿੰਦਾ ਹੈ ਜੋ ਐਨਰਜੀ ਓਪਰੇਟਰ ਨਾੋਲ ਮੇਲ ਕਰਦਾ ਹੈ, ਜਿਵੇਂ ਹੋਰ ਤਿੰਨ ਮੈਟ੍ਰਿਕਸ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ (ਸਪੈਸ਼ੀਅਲ ਡੈਰੀਵੇਟਿਵ) ਨਾਲ ਮੇਲ ਕਰਦੇ ਹਨ।
ਪੌਲੀ ਅਤੇ ਗਾਮਾ ਮੈਟ੍ਰਿਕਸ ਇੱਥੇ ਸਿਧਾੰਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਪੇਸ਼ ਕੀਤੇ ਗਏ ਸਨ, ਨਾ ਕਿ ਆਪਣੇ ਆਪ ਵਿੱਚ ਸ਼ੁੱਧ ਗਣਿਤ ਦੇ ਵਿੱਚ। ਇਹ ਕੁਆਟ੍ਰਨੀਔਨਾਂ ਅਤੇ SO(2) ਅਤੇ SO(3) ਲਾਈ ਗਰੁੱਪਾਂ ਵਿੱਚ ਵਰਤੇ ਜਾਂਦੇ ਹਨ, ਕਿਉਂਕਿ ਇਹ ਮਹੱਤਵਪੂਰਨ ਕਮਿਊਟੇਟਰ [ , ] ਅਤੇ ਐਂਟੀਕਮਿਊਟੇਟਰr [ , ]+ ਸਬੰਧਾੰ ਨੂੰ ਕ੍ਰਮਵਾਰ ਸੰਤੁਸ਼ਟ ਕਰਦੇ ਹਨ:
ਜਿੱਥੇ ਫਰਮਾ:Math ਤਿੰਨ-ਅਯਾਮੀ ਲੇਵੀ-ਸਿਵਿਟਾ ਚਿੰਨ ਹੈ। ਗਾਮਾ ਮੈਟ੍ਰਿਕਸ ਕਲਿੱਫੋਰਡ ਅਲਜਬਰੇ ਅੰਦਰ ਬੇਸਿਸ ਰਚਦਾ ਹੈ, ਅਤੇ ਐਂਟੀਕਮਿਊਟੇਸ਼ਨ ਸਬੰਧ ਅੰਦਰ ਫਲੈਟ ਸਪੇਸਟਾਈਮ ਮਿੰਕੋਵਸਕੀ ਮੈਟ੍ਰਿਕ ਫਰਮਾ:Math ਦੇ ਹਿੱਸਿਆਂ ਨਾਲ ਇੱਕ ਸੰਪਰਕ ਰੱਖਦਾ ਹੈ:
(ਵੇਰਬੇਨਾਂ ਪੇਸ਼ ਕਰਦੇ ਹੋਏ ਇਸਨੂੰ ਵਕਰਿਤ ਸਪੇਸਟਾਈਮ ਤੱਕ ਵਧਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਪਰ ਇਹ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦਾ ਵਿਸ਼ਾ ਨਹੀਂ ਹੈ।)
1929 ਵਿੱਚ, ਬ੍ਰੇਟ ਇਕੁਏਸ਼ਨ ਖੋਜੀ ਗਈ ਜੋ ਦੋ ਜਾਂ ਜਿਆਦਾ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਤੌਰ ਤੇ ਪਰਸਪਰ ਕ੍ਰਿਆ ਕਰ ਰਹੇ ਪੁੰਜ-ਯੁਕਤ ਸਪਿੱਨ-1/2 ਫਰਮਿਔਨਾਂ ਨੂੰ ਪਹਿਲੇ ਦਰਜੇ ਦੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੁਧਾਰ ਤੱਕ ਦਰਸਾਉਂਦੀ ਖੋਜੀ ਗਈ ਸੀ।; ਜੋ ਅਜਿਹੇ ਕਿਸੇ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਕਈ-ਕਣ ਸਿਸਟਮ ਨੂੰ ਦਰਸਾਉਣ ਦੀਆਂ ਪਹਿਲੀਆਂ ਕੋਸ਼ਿਸ਼ਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸੀ। ਫੇਰ ਵੀ, ਇਹ, ਅਜੇ ਵੀ ਸਿਰਫ ਇੱਕ ਲੱਗਪਗਤਾ ਹੀ ਹੈ, ਅਤੇ ਹੈਮਿਲਟੋਨੀਅਨ ਬਹੁਤ ਲੰਬੇ ਅਤੇ ਗੁੰਝਲਦਾਰ ਜੋੜਾਂ ਭਰਿਆ ਹੁੰਦਾ ਹੈ।
ਹੈਲੀਸਿਟੀ ਅਤੇ ਚੀਰੈਲਿਟੀ
ਫਰਮਾ:Main article ਫਰਮਾ:See also ਹੈਲੀਸਿਟੀ ਓਪਰੇਟਰ ਇਸ ਤਰ੍ਹਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ;
ਜਿੱਥੇ p ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਹੁੰਦਾ ਹੈ, S ਕਿਸੇ s ਸਪਿੱਨ ਵਾਲੇ ਕਣ ਦਾ ਸਪਿੱਨ ਓਪਰੇਟਰ ਹੁੰਦਾ ਹੈ, E, ਕਣ ਦੀ ਕੁੱਲ ਊਰਜਾ ਹੁੰਦੀ ਹੈ, ਅਤੇ m0 ਇਸਦਾ ਰੈਸਟ ਮਾਸ (ਪੁੰਜ) ਹੁੰਦਾ ਹੈ। ਹੈਲੀਸਿਟੀ ਸਪਿੱਨ ਅਤੇ ਟ੍ਰਾਂਸਲੇਸ਼ਨਲ ਮੋਮੈਂਟਮ ਵੈਕਟਰਾਂ ਦੀਆਂ ਦਿਸ਼ਾਵਾਂ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀ ਹੈ।[25] ਹੈਲੀਸਿਟੀ ਫ੍ਰੇਮ-ਉੱਤੇ-ਨਿਰਭਰ ਰਹਿੰਦੀ ਹੈ ਜਿਸਦਾ ਕਾਰਣ ਪਰਿਭਾਸ਼ਾ ਅੰਦਰ 3-ਮੋਮੈਂਟਮ ਦਾ ਹੋਣਾ ਹੈ, ਅਤੇ ਸਪਿੱਨ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਕਾਰਣ ਕੁਆਂਟਾਇਜ਼ ਹੁੰਦੀ ਹੈ, ਜੋ ਸਮਾਂਤਰ ਸੇਧ ਵਾਸਤੇ ਅਨਿਰੰਤਰ ਪੌਜ਼ਟਿਵ ਮੁੱਲ ਰੱਖਦਾ ਹੈ, ਅਤੇ ਅਸਮਾਂਤਰ ਸੇਧ ਵਾਸਤੇ ਨੈਗਟਿਵ ਮੁੱਲ ਰੱਖਦਾ ਹੈ।
ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ (ਅਤੇ ਵੇਇਲ ਇਕੁਏਸ਼ਨ) ਅੰਦਰ ਇੱਕ ਖੁਦ-ਬ-ਖੁਦ ਹੋਂਦ ਸਪਿੱਨ-½ ਓਪਰੇਟਰ ਦੀ 3-ਮੋਮੈਂਟਮ (ਗੁਣਾ c), ਫਰਮਾ:Math ਦਾ ਪਰਛਾਵਾਂ (ਪ੍ਰੋਜੈਕਸ਼ਨ) ਹੈ, ਜੋ ਹੈਲੀਸਿਟੀ (ਸਪਿੱਨ-½ ਮਾਮਿਲਆਂ ਲਈ) ਗੁਣਾ ਹੁੰਦਾ ਹੈ।
ਪੁੰਜਹੀਣ ਕਣਾਂ ਵਾਸਤੇ ਹੈਲੀਸਿਟੀ ਇਸ ਤਰ੍ਹਾਂ ਸਰਲ ਹੋ ਜਾਂਦੀ ਹੈ:
ਉੱਚ-ਸਪਿੱਨ
ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਸਿਰਫ ਸਪਿੱਨ-1/2 ਕਣਾਂ ਨੂੰ ਹੀ ਦਰਸਾ ਸਕਦੀ ਹੈ। ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਤੋਂ ਪਰੇ, ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾੰ ਵਿਭਿੰਨ ਸਪਿੱਨਾਂ ਵਾਲ਼ੇ ਸੁਤੰਤਰ ਕਣਾਂ ਤੇ ਲਾਗੂ ਕੀਤੀਆੰ ਗਈਆਂ ਹਨ। 1936 ਵਿੱਚ, ਡੀਰਾਕ ਨੇ ਆਪਣੀ ਇਕੁਏਸ਼ਨ ਨੂੰ ਸਾਰੇ ਫਰਮੀਔਨਾਂ ਤੱਕ ਵਧਾਇਆ, ਤਿੰਨ ਸਾਲਾੰ ਬਾਦ ਫੇਅਰਜ਼ ਅਤੇ ਪੌਲੀ ਨੇ ਓਸੇ ਇਕੁਏਸ਼ਨ ਨੂੰ ਦੁਬਾਰਾ ਵਿਓਂਤਬੱਧ ਕੀਤਾ।[26] ਬ੍ਰਗਮਾੱਨ-ਵਿਗਨਰ ਇਕੁਏਸ਼ਨਾਂ 1948 ਵਿੱਚ ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਥਿਊਰੀ ਦੀ ਵਰਤੋਂ ਨਾਲ ਖੋਜੀਆਂ ਗਈਆਂ, ਜੋ ਕਿਸੇ ਵੀ ਸਪਿੱਨ ਵਾਲ਼ੇ ਸਾਰੇ ਸੁਤੰਤਰ ਕਣਾਂ ਤੇ ਲਾਗੂ ਹੋਣਯੋਗ ਹਨ।[27][28] ਉੱਪਰ ਵਾਲ਼ੀ ਕਲੇਇਨ ਜੌਰਡਨ ਇਕੁਏਸ਼ਨ ਦੀ ਫੈਕਟ੍ਰਾਇਜ਼ੇਸ਼ਨ (ਹਿੱਸਾਬੰਦੀ) ਤੇ ਵਿਚਾਰ ਕਰਦੇ ਹੋਏ, ਅਤੇ ਹੋਰ ਠੋਸ ਤਰੌਰ ਤੌਰ ਤੇ ਲੌਰੱਟਜ਼ ਗਰੁੱਪ ਥਿਊਰੀ ਦੁਆਰਾ, ਸਪਿੱਨ ਨੂੰ ਮੈਟ੍ਰਿਕਸਾੰ ਦੇ ਰੂਪ ਵਿੱਚ ਪੇਸ਼ ਕਰਨਾ ਸਪਸ਼ਟ ਹੋ ਜਾਂਦਾ ਹੈ।
ਵੇਵ ਫੰਕਸ਼ਨ ਬਹੁ-ਹਿੱਸਾ-ਯੁਕਤ (ਮਲਟੀ-ਕੰਪੋਨੈਂਟ) ਸਪਿੱਨੌਰ ਫੀਲਡਾਂ ਹੁੰਦੇ ਹਨ, ਜਿਹਨਾੰ ਨੂੰ ਸਪੇਸ ਅਤੇ ਸਮੇਂ ਦੇ ਫੰਕਸ਼ਨਾਂ ਦੇ ਕਾਲਮ ਵੈਕਟਰਾਂ ਦੇ ਤੌਰ ਤੇ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:
ਜਿੱਥੇ ਸੱਜੇ ਪਾਸੇ ਉੱਤੇ ਵਾਲ਼ਾ ਦਰਸਾਓ ਹਰਮਿਸ਼ੀਅਨ ਕੰਜੂਗੇਟ ਹੁੰਦਾ ਹੈ। ਸਪਿੱਨ ਫਰਮਾ:Math ਵਾਲ਼ੇ ਕਿਸੇ ਪੁੰਜਯੁਕਤ ਕਣ ਵਾਸਤੇ, ਕਣ ਲਈ ਫਰਮਾ:Math ਕੰਪੋਨੈਂਟ ਹੁੰਦੇ ਹਨ, ਅਤੇ ਸਬੰਧਤ ਐਂਟੀਪਾਰਟੀਕਲ ਵਾਸਤੇ, ਇੱਕ ਹੋਰ ਫਰਮਾ:Math ਕੰਪੋਨੈਂਟ ਹੁੰਦੇ ਹਨ (ਹਰੇਕ ਮਾਲੇ ਵਿੱਚ ਫਰਮਾ:Math ਸੰਭਵ ਫਰਮਾ:Math ਮੁੱਲ ਹੁੰਦੇ ਹਨ), ਜੋ ਸਭ ਰਲਮਿਲ ਕੇ ਇੱਕ ਫਰਮਾ:Math-ਕੰਪੋਨੈਂਟ ਸਪਿੱਨੌਰ ਫੀਲਡ ਰਚਦੇ ਹਨ:
ਜਿਸ ਵਿੱਚ + ਸਬਸਕ੍ਰਪਿਟ ਕਣ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੀ ਹੈ ਅਤੇ – ਸਬਸਕ੍ਰਿਪਟ ਐਂਟੀਪਾਰਟੀਕਲ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ। ਫੇਰ ਵੀ, ਸਪਿੱਨ s ਰੱਖਦੇ ਪੁੰਜਹੀਣ ਕਣਾਂ ਵਾਸਤੇ, ਸਿਰਫ ਦੋ-ਕੰਪੋਨੈਂਟ ਸਪਿੱਨੌਰ ਫੀਲਡਾਂ ਹੀ ਹੁੰਦੀਆਂ ਹਨ; ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਫੀਲਡ ਓਸ ਕਣ ਲਈ ਹੁੱਦੀ ਹੈ ਜਿਸਦੀ ਹੈਲੀਸਿਟੀ ਅਵਸਥਾ +s ਨਾਲ ਸਬੰਧਤ ਹੋਵੇ ਅਤੇ ਦੂਜੀ ਉਲਟ ਹੈਲੀਸਿਟੀ ਵਾਲੀ ਅਵਸਥਾ −s ਨਾਲ ਸਬੰਧਤ ਐਂਟੀਪਾਰਟੀਕਲ ਲਈ ਹੁੰਦੀ ਹੈ:
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਐਨਰਜੀ-ਮੋਮੈਂਟਮ ਸਬੰਧ ਮੁਤਾਬਿਕ, ਸਾਰੇ ਪੁੰਜਹੀਣ ਕਣ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਯਾਤਰਾ ਕਰਦੇ ਹਨ, ਇਸਲਈ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਨਾਲ ਯਾਤਰਾ ਕਰਨ ਵਾਲੇ ਕਣਾਂ ਨੂੰ ਦੋ-ਕੰਪੋਨੈਂਟ ਸਪਿੱਨੌਰਾਂ ਰਾਹੀਂ ਵੀ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ, ਏਲਾਇ ਕਾਰਟਨ ਨੇ 1913 ਵਿੱਚ ਸਪਿੱਨੌਰਾਂ ਦੀ ਸਰਵਸਧਾਰਨ ਕਿਸਮ ਖੋਜੀ, ਜੋ 1927 ਸੰਨ ਤੋਂ ਬਾਦ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ ਅੰਦਰ ਸਪਿੱਨੌਰਾਂ ਦਾ ਭੇਤ ਖੁੱਲੇ ਜਾਣ ਤੋਂ ਪਹਿਲਾਂ ਦੀ ਗੱਲ ਹੈ।
ਉੱਚ-ਸਪਿੱਨ ਕਣਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਇਕੁਏਸ਼ਨਾਂ ਲਈ, ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਦਾ ਸ਼ਾਮਿਲ ਕੀਤਾ ਜਾਣਾ ਸਰਲ ਮਿਨੀਮਲ ਕਪਲਿੰਗ ਦੇ ਨੇੜੇ ਤੇੜੇ ਵੀ ਨਹੀਂ ਹੁੰਦਾ, ਜੋ ਗਲਤ ਅਨੁਮਾਨਾਂ ਨੂੰ ਪੈਦਾ ਕਰਦਾ ਹੈ ਅਤੇ ਸਵੈ-ਅਨੁਕੂਲ ਨਹੀਂ ਰਹਿੰਦਾ।[29] ħ/2 ਤੋਂ ਜਿਆਦਾ ਵੱਡੇ ਸਪਿੱਨਾਂ ਲਈ, ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨ ਕਣਾਂ ਦੇ ਪੁੰਜ, ਸਪਿੱਨ, ਅਤੇ ਇਲੈਕਟ੍ਰਿਕ ਚਾਰਜ ਦੁਆਰਾ ਨਿਰਧਾਰਿਤ ਨਹੀਂ ਕੀਤੀ ਜਾਂਦੀ: ਸਪਿੱਨ ਕੁਆਂਟਮ ਨੱਬਰ ਦੁਆਰਾ ਪ੍ਰਵਾਨਿਤ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟਾਂ (ਇਲੈਕਟ੍ਰਿਕ ਡਾਇਪੋਲ ਮੋਮੈਂਟਾਂ ਅਤੇ ਮੈਗਨੈਟਿਕ ਡਾਇਪੋਲ ਮੋਮੈਂਟਾਂ) ਮਨਮਰਜੀ ਦੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। (ਸਿਧਾਂਤਿਕ ਤੌਰ ਤੇ, ਮੈਗਨੈਟਿਕ ਚਾਰਜ ਵੀ ਯੋਗਦਾਨ ਪਾਏਗਾ)। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਸਪਿੱਨ-½ ਮਾਮਲੇ ਸਿਰਫ ਇੱਕ ਚੁੰਬਕੀ ਡਾਇਪੋਲ ਦੀ ਹੀ ਆਗਿਆ ਦਿੰਦੇ ਹਨ, ਪਰ ਸਪਿੱਨ-1 ਕਣ ਵਾਸਤੇ ਚੁੰਬਕੀ ਕੁਆਡ੍ਰਪੋਲ ਅਤੇ ਇਲੈਕਟ੍ਰਿਕ ਡਾਇਪੋਲ ਵੀ ਸੰਭਵ ਹੁੰਦੇ ਹਨ।[24] ਇਸ ਪ੍ਰਸੰਗ ਉੱਤੇ ਹੋਰ ਜਾਣਕਾਰੀ ਲਈ, ਦੇਖੋ ਮਲਟੀਪਲ ਫੈਲਾਓ ਅਤੇ (ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ) Cédric Lorcé (2009).[30][31]
ਵਿਲੌਸਿਟੀ ਓਪਰੇਟਰ
ਸ਼੍ਰੋਡਿੰਜਰ/ਪੌਲੀ ਵਿਲੌਸਿਟੀ ਓਪਰੇਟਰ ਨੂੰ ਕਲਾਸੀਕਲ ਪਰਿਭਾਸ਼ਾ ਫਰਮਾ:Math ਵਰਤਦੇ ਹੋਏ ਕਿਸੇ ਪੁੰਜਯੁਕਤ ਕਣ ਲਈ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਅਤੇ ਆਮ ਤਰੀਕੇ ਵਾਂਗ ਕੁਆਂਟਮ ਓਪਰੇਟਰਾਂ ਨਾਲ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ:[32]
ਜਿਹਨਾਂ ਦੀਆਂ ਅਜਿਹੇ ਆਈਗਨਮੁੱਲ ਹੁੰਦੇ ਹਨ ਜੋ ਕੋਈ ਵੀ ਮੁੱਲ ਲੈ ਸਕਦੇ ਹਨ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ, ਡੀਰਾਕ ਥਿਊਰੀ ਅੰਦਰ, ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਹੁੰਦੇ ਹਨ:
ਜਿਹਨਾਂ ਦੇ ਆਈਗਨਮੁੱਲ ±c ਦਰਮਿਆਨ ਰਹਿਣੇ ਚਾਹੀਦੇ ਹਨ। ਹੋਰ ਜਿਆਦਾ ਸਿਧਾਂਤਿਕ ਪਿਛੋਕੜ ਦੀ ਜਾਣਕਾਰੀ ਲਈ, ਦੇਖੋ ਫੋਲਡੀ-ਵਾਓਥੁਸੇਨ ਪਰਿਵਰਤਨ।
ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਲਗ੍ਰਾਂਜੀਅਨ
ਸ਼੍ਰੋਡਿੰਜਰ ਪਿਕਚਰ ਅੰਦਰ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ, ਫਰਮਾ:Math ਵਾਸਤੇ ਡਿੱਫ੍ਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨਾਂ ਦੀ ਰਚਨਾ ਪ੍ਰਤਿ ਇੱਕ ਪਹੁੰਚ ਹਨ। ਇੱਕ ਬਰਾਬਰ ਦਾ ਹੋਰ ਬਦਲ ਹੈ ਜੋ ਇੱਕ ਲਗ੍ਰਾਂਜੀਅਨ (ਜਿਸਦਾ ਸੱਚਮੁੱਚ ਅਰਥ ਲਗ੍ਰਾਂਜੀਅਨ ਡੈਂਸਟੀ ਹੁੰਦਾ ਹੈ) ਨਿਰਧਾਰਿਤ ਕਰਨਾ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਫੇਰ ਫੀਲਡ-ਥਿਓਰੈਟਿਕ ਇਲੁਰ-ਲਗ੍ਰਾਂਜ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਡਿਫ੍ਰੈਂਸ਼ੀਅਲ ਇਕੁਏਸ਼ਨ ਪੈਦਾ ਕਰਨਾ ਹੈ:
ਕੁੱਝ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ ਵਾਸਤੇ, ਜਾਂਚ-ਪੜਤਾਲ ਕਰਕੇ ਇੱਕ ਲਗ੍ਰਾਂਜੀਅਨ ਖੋਜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਡੀਰਾਕ ਲਗ੍ਰਾਂਜੀਅਨ ਇਹ ਹੁੰਦਾ ਹੈ:[33]
ਅਤੇ ਕਲੇਇਨ-ਜੌਰਡਨ ਲਗ੍ਰਾਂਜੀਅਨ ਇਹ ਹੁੰਦਾ ਹੈ:
ਇਹ ਸਾਰੀਆਂ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ ਵਾਸਤੇ ਸੰਭਵ ਨਹੀਂ ਹੈ; ਅਤੇ ਇੱਕ ਕਾਰਣ ਕਿ ਲੌਰੰਟਜ਼ ਗਰੁੱਪ ਸਿਧਾਂਤਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਮਹੱਤਵਪੂਰਨ ਅਤੇ ਅਸਰਦਾਰ ਹੈ, ਇਹ ਹੈ: ਬੁਨਿਆਦੀ ਇਨਵੇਰੀਅੰਸ ਅਤੇ ਸਮਿੱਟਰੀਆਂ, ਸਪੇਸ ਅਤੇ ਟਾਈਮ ਅੰਦਰ ਢੁਕਵੀਆਂ ਗਰੁੱਪ ਪ੍ਰਸਤੁਤੀਆਂ ਵਰਤਦੇ ਹੋਏ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਵੇਵ ਇਕੁਏਸ਼ਨਾਂ ਵਿਓਂਤਬੰਦ ਕਰਨ ਲਈ ਵਰਤੀਆੰ ਜਾ ਸਕਦੀਆਂ ਹਨ। ਫਰਮਾ:Math ਦੀ ਫੀਲਡ ਵਿਆਖਿਆ ਸਮੇਤ ਲਗ੍ਰਾਂਜੀਅਨ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ ਦਾ ਵਿਸ਼ਾ ਹੈ ਨਾ ਕਿ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦਾ: ਫਾਇਨਮੈਨ ਦਾ ਪਾਥ ਇੰਟਗ੍ਰਲ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਇਨਵੇਰੀਅੰਟ ਲਗ੍ਰਾਂਜੀਅਨਾਂ ਦੀ ਵਰਤੋਂ ਕਰਦੀ ਹੈ ਨਾ ਕਿ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰਾਂ ਦੀ, ਕਿਉਂਕਿ ਹੈਮਿਲਟੋਨੀਅਨ ਓਪਰੇਟਰ ਅਤਿ-ਗੁੰਝਲਦਾਰ ਬਣ ਸਕਦੇ ਹਨ, ਦੇਖੋ (ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ) ਐੱਸ ਵੇਇਨਬ੍ਰਗ (1995)[34]
ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ
ਗੈਰ-ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਕਲਾਸੀਕਲ ਸੂਡੋਵੈਕਟਰ ਪਰਿਭਾਸ਼ਾ ਫਰਮਾ:Math ਤੋਂ ਰਚਿਆ ਜਾਂਦਾ ਹੈ। ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਓਪਰੇਟਰ ਸਿੱਧੇ ਤੌਰ ਤੇ ਓੱਥੇ ਸ਼ਾਮਿਲ ਕਰ ਦਿੱਤੇ ਜਾਂਦੇ ਹਨ ਜਿੱਥੇ ਇਹ ਔਰਬਿਟਲ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਅੰਦਰ ਦਿਸਦੇ ਹਨ ਜੋ ਬਾਹਰੀ ਅਲਜਬਰਾ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਅੰਦਰ ਇੱਕ ਬਾਇਵੈਕਟਰ ਦੇ ਸਮਾਨ, ਕਣ ਦੇ ਚਾਰ-ਅਯਾਮੀ ਪੁਜੀਸ਼ਨ ਅਤੇ ਮੋਮੈਂਟਮ ਤੋਂ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ:[35]
ਜੋ ਸਾਰੇ ਇਕੱਠੇ ਕਰਕੇ ਛੇ ਕੰਪੋਨੈਂਟ ਬਣਦੇ ਹਨ: ਤਿੰਨ ਗੈਰ-ਸਾਪੇਖਿਕ 3-ਔਰਬਿਟਲ ਐਂਗੁਲਰ ਮੋਮੈਂਟੈ ਹੁੰਦੇ ਹਨ; ਫਰਮਾ:Math, ਫਰਮਾ:Math, ਫਰਮਾ:Math, ਅਤੇ ਬਾਕੀ ਬਚੇ ਤਿੰਨ ਫਰਮਾ:Math, ਫਰਮਾ:Math, ਫਰਮਾ:Math ਘੁੰਮ ਰਹੀ ਚੀਜ਼ ਦੇ ਕੇਂਦਰੀ ਪੁੰਜ ਦੇ ਸਹਾਰੇ ਹੁੰਦੇ ਹਨ। ਸਪਿੱਨ ਵਾਲੇ ਕਣਾਂ ਲਈ ਇੱਕ ਵਾਧੂ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ)-ਕੁਆਂਟਮ ਰਕਮ ਨੂੰ ਵੀ ਜੋੜਨਾ ਪੈਂਦਾ ਹੈ। ਰੈਸਟ ਮਾਸ ਫਰਮਾ:Math ਵਾਲੇ ਕਿਸੇ ਕਣ ਵਾਸਤੇ, ਕੁੱਲ ਐਂਗੁਲਰ ਮੋਮੈਂਟਮ ਟੈਂਸਰ ਇਹ ਹੁੰਦਾ ਹੈ:
ਜਿੱਥੇ ਸਟਾਰ ਦਾ ਚਿੰਨ੍ਹ ਹੋੱਜ ਡਿਊਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ, ਅਤੇ
ਪੌਲੀ-ਲੋਬੰਸਕੀ ਸੂਡੋ-ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ।[36] ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸਪਿੱਨ ਉੱਤੇ ਹੋਰ ਜਾਣਕਾਰੀ ਹਾਸਿਲ ਕਰਨ ਵਾਸਤੇ, ਦੇਖੋ (ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ) S.M. Troshin ਅਤੇ N.E. Tyurin (1994)[37]
ਥੌਮਸਨ ਪ੍ਰੀਸੈਸ਼ਨ ਅਤੇ ਸਪਿੱਨ-ਔਰਬਿਟ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ
1926 ਵਿੱਚ ਥੌਮਸਨ ਪ੍ਰੀਸੈੱਸ਼ਨ ਖੋਜਿਆ ਗਿਆ: ਜੋ ਅਸਥੂਲ (ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਜਾਂ ਵਿਸ਼ਾਲ) ਚੀਜ਼ਾਂ ਦੀ ਰੋਟੇਸ਼ਨ ਅਤੇ ਐਟਮਾਂ ਦੀ ਸਪਿਨ-ਔਰਬਿਟ ਪਰਸਪਰ ਕ੍ਰਿਆ ਵਿੱਚ ਵਰਤੇ ਜਾਣ ਵਾਲ਼ੇ ਬੁਨਿਆਦੀ ਕਣਾਂ ਦੇ ਸਪਿੱਨ ਪ੍ਰਤਿ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੁਧਾਰ ਹਨ।[38][39] 1939 ਵਿੱਚ ਵਿਗਨਰ ਨੇ ਥਫਮਸਨ ਪ੍ਰੀਸੈੱਸ਼ਨ ਵਿਓੰਤਬੰਦੀ ਬਣਾਈ।
ਕਲਾਸੀਕਲ ਇਲੈਕਟ੍ਰੋਮੈਗਨਟਿਜ਼ਮ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਕਿਸੇ ਵਿਲੌਸਿਟੀ ਫਰਮਾ:Math ਨਾਲ ਗਤੀਸ਼ੀਲ ਕੋਈ ਇਲੈਕਟ੍ਰੌਨ ਜੋ ਕਿਸੇ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਫਰਮਾ:Math ਰਾਹੀੰ ਲੰਘ ਰਿਹਾ ਹੋਵੇ, ਪਰ ਕਿਸੇ ਚੁੰਬਕੀ ਫੀਲਡ ਫਰਮਾ:Math ਰਾਹੀਂ ਨਾ ਗੁਜ਼ਰ ਰਿਹਾ ਹੋਵੇ, ਆਪਣੀ ਖੁਦ ਦੀ ਰੈਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਇੱਕ ਲੌਰੰਟਜ਼-ਪਰਿਵਰਤਿਤ ਚੁੰਬਕੀ ਫੀਲਡ ਫਰਮਾ:Math ਅਨੁਭਵ ਕਰੇਗਾ:
ਗੈਰ-ਸਾਪੇਖਿਕ ਹੱਦ ਫਰਮਾ:Math ਅੰਦਰ:
ਇਸਲਈ ਗੈਰ-ਸਾਪੇਖਿਕ ਸਪਿੱਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਹੈਮਿਲਟੋਨੀਅਨ ਇਹ ਬਣ ਜਾਂਦਾ ਹੈ:[40]
ਜਿੱਥੇ ਪਹਿਲੀ ਰਕਮ ਪਹਿਲਾਂ ਤੋਂ ਹੀ ਗੈਰ-ਸਾਪੇਖਿਕ ਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟ ਪਰਸਪਰ ਕ੍ਰਿਆ ਹੈ, ਅਤੇ ਦੂਜੀ ਰਕਮ (ਟਰਮ) ਫਰਮਾ:Math ਦਰਜੇ ਦੀ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਰੈਕਸ਼ਨ (ਸੋਧ) ਹੁੰਦੀ ਹੈ, ਪਰ ਇਹ ਪ੍ਰਯੋਗਿਕ ਐਟੌਮਿਕ ਸਪੈਕਟ੍ਰਾ ਨਾਲ ½ ਦੇ ਫੈਕਟਰ (ਹਿੱਸੇ) ਜਿੰਨੀ ਅਸਹਿਮਤੀ ਪ੍ਰਗਟਾਉਂਦੀ ਹੈ। ਐੱਲ ਥੌਮਸਨ ਦੁਆਰਾ ਇਹ ਇਸ਼ਾਰਾ ਕੀਤਾ ਗਿਆ ਸੀ। ਕਿ ਇੱਕ ਦੂਜਾ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਪ੍ਰਭਾਵ ਹੁੰਦਾ ਹੈ: ਜੋ ਇਲੈਕਟ੍ਰੌਨ ਵਿਲੌਸਿਟੀ ਦੇ ਸਮਕੋਣ ਤੇ ਇੱਕ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਕੰਪੋਨੈਂਟ ਹੁੰਦਾ ਹੈ ਜੋ ਇਸਦੀ ਤਤਕਾਲ ਵਿਲੌਸਿਟੀ ਪ੍ਰਤਿ ਸਮਕੋਣ ਤੇ ਇਲੈਕਟ੍ਰੌਨ ਦੇ ਇੱਕ ਵਾਧੂ ਐਕਸਲ੍ਰੇਸ਼ਨ ਨੂੰ ਜਨਮ ਦਿੰਦਾ ਹੈ, ਇਸਲਈ ਇਲੈਕਟ੍ਰੌਨ ਇਲੈਕਟ੍ਰੌਨ ਇੱਕ ਵਕਰਿਤ (ਮੁੜਵੇਂ) ਰਸਤੇ (ਪਥ) ਉੱਤੇ ਗਤੀ ਕਰਦਾ ਹੈ। ਇਲੈਕਟ੍ਰੌਨ ਇੱਕ ਘੁੰਮਦੀ ਹੋਈ ਰੇਫ੍ਰੈਂਸ ਫ੍ਰੇਮ ਅੰਦਰ ਗਤੀ ਕਰਦਾ ਹੈ, ਅਤੇ ਇਲੈਕਟ੍ਰੌਨ ਦੀ ਇਹ ਵਾਧੂ ਪ੍ਰੀਸੈੱਸ਼ਨ ਥੌਮਸਨ ਪ੍ਰੀਸੈੱਸ਼ਨ ਕਹੀ ਜਾਂਦੀ ਹੈ। ਇਹ ਦਿਖਾਇਆ ਜਾ ਸਕਦਾ ਹੈ[41] ਕਿ ਇਸ ਪ੍ਰਭਾਵ ਦਾ ਸ਼ੁੱਧ ਨਤੀਜਾ ਇਹ ਨਿਕਲਦਾ ਹੈ ਕਿ ਸਪਿੱਨ-ਔਰਬਿਟ ਪਰਸਪਰ ਕ੍ਰਿਆ ਘਟ ਕੇ ਅੱਧੀ ਰਹਿ ਜਾਂਦੀ ਹੈ, ਜਿਵੇਂ ਇਲੈਕਟ੍ਰੌਨ ਦੁਆਰਾ ਅਨੁਭਵ ਕੀਤੀ ਗਈ ਚੁੰਬਕੀ ਫੀਲਡ ਸਿਰਫ ਅੱਧਾ ਮੁੱਲ ਹੀ ਰੱਖਦੀ ਹੋਵੇ, ਅਤੇ ਹੈਮਿਲਟੋਨੀਅਨ ਅੰਦਰ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੋਧ ਇਹ ਹੁੰਦੀ ਹੈ:
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੇ ਮਾਮਲੇ ਅੰਦਰ, ½ ਵਾਲਾ ਫੈਕਟਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ ਦੁਆਰਾ ਅਨੁਮਾਨਿਤ ਹੋ ਜਾਂਦਾ ਹੈ[40]
ਇਤਿਹਾਸ
ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਸਥਾਪਨਾ ਕਰਨ ਵਾਲੀਆਂ ਅਤੇ ਇਸਨੂੰ ਪ੍ਰੇਰਿਤ ਕਰਨ ਵਾਲੀਆਂ ਘਟਨਾਵਾਂ, ਅਤੇ ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਤੱਕ ਜਾਣ ਤੱਕ ਦਾ ਨਿਰੰਰਤ ਸਮਾਂ ਹੇਠਾਂ ਸੰਖੇਪ-ਸ਼ਾਰਾਂਸ਼ ਰੂਪ ਵਿੱਚ ਲਿਖਿਆ ਗਿਆ ਹੈ [ਦੇਖੋ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਆਰ- ਰੈਸਨਿੱਕ ਅਤੇ ਆਰ- ਏਇਸਬ੍ਰਗ (1885),[42] ਅਤੇ ਪੀ ਡਬਲਿਊ ਅਟਕਿਨਜ਼ (1974)[43]]. 1890 ਤੋਂ 1950ਵੇਂ ਦਹਾਕੇ ਤੱਕ ਦੀ ਅੱਧੀ ਸਦੀ ਤੋਂ ਜਿਆਦਾ ਦੇ ਪ੍ਰਯੋਗਿਕ ਅਤੇ ਸਿਧਾਂਤਿਕ ਰਿਸਰਚ ਜੋ ਨਵੀਂ ਅਤੇ ਰਹੱਸਮਈ ਕੁਆਂਟਮ ਥਿਊਰੀ ਵਿੱਚ ਹੋਈ ਜਿਵੇਂ ਇਹ ਰਹੱਸ ਖੁੱਲਣ ਲੱਗੇ ਸਨ। ਕਿ ਬਹੁਤ ਸਾਰੇ ਵਰਤਾਰੇ ਇਕੱਲੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਸਹਾਰੇ ਹੀ ਸਮਝਾਏ ਨਹੀਂ ਜਾ ਸਕਦੇ। 20ਵੀਂ ਸਦੀ ਦੇ ਨੇੜੇ ਖੋਜੀ ਗਈ SR (ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ), ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਯੂਨੀਫਿਕੇਸ਼ਨ ਵੱਲ ਲਿਜਾਉਣ ਵਾਲਾ ਇੱਕ ਲਾਜ਼ਮੀ ਹਿੱਸਾ ਪਾਇਆ ਗਿਆ। ਸਿਧਾਂਤਿਕ ਭਵਿੱਖਬਾਣੀਆਂ ਅਤੇ ਪ੍ਰਯੋਗ ਮੁੱਖ ਤੌਰ ਤੇ ਨਵੀਨ ਖੋਜਾਂ ਐਟੋਮਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ, ਨਿਊਕਲੀਅਰ ਭੌਤਿਕ ਵਿਗਿਆਨ, ਅਤੇ ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਉੱਤੇ ਧਿਆਨ ਕੇਂਦ੍ਰਿਤ ਕਰਨ ਲੱਗ ਪਈਆਂ: ਜਿਸਲਈ ਸਪੈਕਟ੍ਰੋਸਕੋਪੀ, ਡਿਫ੍ਰੈਕਸ਼ਨ ਅਤੇ ਕਣਾਂ ਦੀ ਸਕੈਟ੍ਰਿੰਗ ਤੇ ਵਿਚਾਰ ਹੋਏ, ਅਤੇ ਮੌਲੀਕਿਊਲਾਂ ਅਤੇ ਪ੍ਰਮਾਣੂਆਂ ਅੰਦਰ ਇਲੈਕਟ੍ਰੌਨਾਂ ਅਤੇ ਨਿਊਕਲਾਇ ਉੱਤੇ ਵਿਚਾਰ ਕੀਤੇ ਗਏ। ਸਪਿੱਨ ਦੇ ਪ੍ਰਭਾਵ ਨੇ ਬਹੁਤ ਸਾਰੇ ਨਤੀਜੇ ਕੱਢੇ।
ਕੁਆਂਟਮ ਵਰਤਾਰੇ ਅੰਦਰ ਕਣਾਂ ਦਾ ਸਾਪੇਖਿਕ ਵੇਰਵਾ
- 1905 ਵਿੱਚ ਆਈਨਸਟਾਈਨ ਨੇ ਫੋਟੋਇਲੈਕਟ੍ਰਿਕ ਪ੍ਰਭਾਵ ਸਮਝਾਇਆ; ਜੋ ਫੋਟੌਨਾਂ ਦੇ ਰੂਪ ਵਿੱਚ ਪ੍ਰਕਾਸ਼ ਦੇ ਇੱਕ ਕਣ ਦਾ ਵਿਵਰਣ ਹੈ।
- 1916 ਵਿੱਚ, ਸੋੱਮਰਫੈਲਡ ਨੇ ਫਾਈਨ ਸਟ੍ਰਕਚਰ ਸਮਝਾਈ; ਜੋ ਪਹਿਲੇ ਦਰਜੇ ਦੀਆਂ ਸਾਪੇਖਿਕ (ਰੀਲੇਟੀਵਿਸਟਿਕ) ਸੋਧਾਂ ਕਾਰਣ ਐਟਮਾਂ ਦੀਆਂ ਸਪੈਕਟ੍ਰਲ ਰੇਖਾਵਾਂ ਦਾ ਖਿੰਡਣਾ ਹੈ।
- 1923 ਦੇ ਵਿੱਚ ਖੋਜੇ ਗਏ ਕੌੰਪਟਨ ਪ੍ਰਭਾਵ ਨੇ ਹੋਰ ਸਬੂਤ ਮੁਹੱਈਆ ਕਰਵਾਏ ਕਿ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਲਾਗੂ ਹੁੰਦੀ ਹੈ; ਜੋ ਇਸ ਮਾਮਲੇ ਵਿੱਚ ਫੋਟੌਨ-ਇਲੈਕਟ੍ਰੌਨ ਸਕੈਟ੍ਰਿੰਗ ਦਾ ਇੱਕ ਕਣ-ਵਿਵਰਣ ਸੀ। ਡੀ ਬ੍ਰਗੋਲਿ ਨੇ ਵੇਵ-ਪਾਰਟੀਕਲ ਡਿਊਲਿਟੀ ਨੂੰ ਪਦਾਰਥ (ਮੈਟਰ) ਤੱਕ ਵਧਾਇਆ: ਡਿ ਬ੍ਰਗੋਲਿ ਰਿਲੇਸ਼ਨਜ਼, ਜੋ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ ਅਨੁਕੂਲਤਾ ਰੱਖਦੇ ਹਨ।
- 1927 ਵਿੱਚ ਡੈਵੀਸੱਨ ਅਤੇ ਜ੍ਰਮਰ ਅਤੇ ਅਲੱਗ ਤੌਰ ਤੇ ਗੀ ਥੌਮਸਨ ਨੇ ਸਫਲਤਾਪੂਰਵਕ ਇਲੈਕਟ੍ਰੌਨ ਡਿਫ੍ਰੈਕਟ ਕੀਤੇ, ਅਤੇ ਵੇਵ-ਪਾਰਟੀਕਲ ਡਿਊਲਿਟੀ ਦੇ ਪ੍ਰਯੋਗਿਕ ਸਬੂਤ ਮੁਹੱਈਆ ਕਰਵਾਏ।
ਪ੍ਰਯੋਗ
- 1897 ਜੇ ਜੇ ਥੌਮਸਨ ਇਲੈਕਟ੍ਰੌਨ ਖੋਜਦਾ ਹੈ ਅਤੇ ਇਸਦਾ ਪੁੰਜ-ਤੋਂ ਚਾਰਜ ਅਨੁਪਾਤ ਨਾਪਦਾ ਹੈ। ਜ਼ੀਮੈਨ ਇਫੇੱਕਟ ਦੀ ਖੋਜ: ਕਿਸੇ ਸਪੈਕਟ੍ਰਲ ਰੇਖਾ ਦਾ ਕਿਸੇ ਸਥਿਰ ਚੁੰਬਕੀ ਫੀਲਡ ਦੀ ਹਾਜ਼ਰੀ ਵਿੱਚ ਬਹੁਤ ਸਾਰੇ ਕੰਪੋਨੈਂਟਾਂ ਵਿੱਚ ਖਿੰਡ ਜਾਣਾ।
- 1908 ਮਿੱਲੀਕਾਨ, ਔਇਲ ਡ੍ਰੌਪ ਐਕਸਪੈਰੀਮੈਂਟ (ਤੇਲ ਦੇ ਤੁਪਕੇ ਨਾਲ ਪ੍ਰਯੋਗ) ਵਿੱਚ ਇਲੈਕਟ੍ਰੌਨ ਉੱਤੇ ਦਾ ਚਾਰਜ ਨਾਪਦਾ ਹੈ ਅਤੇ ਇਸਦੀ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਦਾ ਪ੍ਰਯੋਗਿਕ ਸਬੂਤ ਖੋਜਦਾ ਹੈ।
- 1911 ਅਲਫਾ ਕਣ ਸਕੈਟ੍ਰਿੰਫਗ ਜੋ ਰਦ੍ਰਫੋਰਡ ਦੁਆਰਾ ਗੀਗਰ-ਮਾਰਡੇਨ ਪ੍ਰਯੋਗ ਵਿੱਚ ਕੀਤੀ ਗਈ, ਨੇ ਦਿਖਾਇਆ ਕਿ ਐਟਮ ਇੱਕ ਅੰਦਰੂਨੀ ਬਣਤਰ ਰੱਖਦੇ ਹਨ: ਜੋ ਐਟੋਮਿਕ ਨਿਊਕਲੀਅਸ ਹੁੰਦੀ ਹੈ।[44]
- 1913 ਸਟਾਰਕ ਇੱਫੈਕਟ ਖੋਜਿਆ ਗਿਆ: ਜੋ ਕਿਸੇ ਸਥਿਰ ਇਲੈਕਟ੍ਰਿਕ ਫੀਲਡ ਕਾਰਣ ਸਪੈਕਟ੍ਰਲ ਰੇਖਾਵਾਂ ਦਾ ਖਿੰਡਣਾ ਹੈ (ਜ਼ੀਮੈਨ ਇੱਫੈਕਟ ਨਾਲ ਤੁਲਨਾ)।
- 1922 ਸਟ੍ਰਨ-ਗ੍ਰਲਾਚ ਪ੍ਰਯੋਗ: ਸਪਿੱਨ ਅਤੇ ਇਸਦੀ ਕੁਆਂਟਾਇਜ਼ੇਸ਼ਨ ਦੇ ਪ੍ਰਯੋਗਿਕ ਸਬੂਤ।
- 1924 ਸਟੋਨ੍ਰ ਨੇ ਮੈਗਨੈਟਿਕ ਫੀਲਡਾਂ ਅੰਦਰ ਐਨਰਜੀ ਲੈਵਲਾਾਂ ਦੇ ਖਿੰਡਣ ਦਾ ਅਧਿਐਨ ਕੀਤਾ।
- 1932 ਪੌਜ਼ੀਟ੍ਰੌਨਾਂ ਦੀ ਸਿਧਾਂਤਿਕ ਭਵਿੱਖਬਾਣੀ ਨੂੰ ਸਾਬਤ ਕਰਦੀ ਹੋਈ ਐਂਡ੍ਰਸਨ ਦੁਆਰਾ ਪੌਜ਼ੀਟ੍ਰੌਨਾਂ ਅਤੇ ਚਾਡਵਿਕ ਦੁਆਰਾ ਨਿਊਟ੍ਰੌਨ ਦੀ ਪ੍ਰਯੋਗਿਕ ਖੋਜ।
- 1958 ਮੌਸਬਾਓਇਰ ਇੱਫੈਕਟ ਦੀ ਖੋਜ: ਗਰੈਵੀਟੇਸ਼ਨਲ ਰੈੱਡਸ਼ਿਫਟ ਅਤੇ ਟਾਈਮ ਡਿਲੇਸ਼ਨ ਦੇ ਸ਼ੁੱਧ ਨਾਪਾਂ ਲਈ ਅਤੇ ਹਾਈਪਰਫਾਈਨ ਪਰਸਪਰ ਕ੍ਰਿਆਵਾਂ ਅੰਦਰ ਨਿਊਕਲੀਅਰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟਾਂ ਦੇ ਵਿਸ਼ਲੇਸ਼ਣ ਵਿੱਚ ਲਾਭਦਾਇਕ, ਕਿਸੇ ਠੋਸ ਅੰਦਰ ਬੰਨੇ ਹੋਏ ਐਟੌਮਿਕ ਨਿਊਕਲਾਇ ਦੁਆਰਾ ਗਾਮਾ ਰੇਡੀਏਸ਼ਨ ਦੀ ਰੈਜ਼ੋਨੈਂਟ ਅਤੇ ਰਿਕੁਆਇਲ-ਮੁਕਤ ਨਿਕਾਸ ਅਤੇ ਖਪਤ।[45]
ਕੁਆਂਟਮ ਗੈਰ-ਸਥਾਨਿਕਤਾ ਅਤੇ ਸਾਪੇਖਿਕ ਸਥਾਨਿਕਤਾ
1935 ਵਿੱਚ, ਆਈਨਸਟਾਈਨ, ਰੋਜ਼ਨ, ਪੋਡੋਲਸਕਿ ਨੇ ਇੱਕ ਪੇਪਰ ਛਾਪਿਆ[46] ਜਿਸ ਵਿੱਚ ਕਣਾਂ ਦੀ ਕੁਆਂਟਮ ਇੰਟੈਂਗਲਮੈਂਟ ਬਾਰੇ ਲਿਖਿਆ ਸੀ।, ਜੋ ਕੁਆਂਟਮ ਗੈਰਸਥਾਨਿਕਤਾ ਤੇ ਸਵਾਲ ਕਰਦਾ ਸੀ ਅਤੇ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਸਥਾਪਿਤ ਕਾਰਣਾਤਮਿਕਤਾ ਦੀ ਸਪਸ਼ਟ ਉਲੰਘਣਾ ਸੀ: ਕਿ ਕਣ ਮਨਮਰਜੀ ਦੀ ਦੂਰੀ ਉੱਤੇ ਤਤਕਾਲ ਪਰਸਪਰ ਕ੍ਰਿਆ (ਗੱਲਬਾਤ) ਕਰ ਸਕਦੇ ਹਨ। ਇਹ ਇੱਕ ਗਲਤਵਹਿਮੀ ਸੀ। ਕਿਉਂਕਿ ਸੂਚਨਾ ਇੰਟੈਗਲਡ ਅਵਸਥਾਵਾਂ ਅੰਦਰ ਸਥਾਂਤ੍ਰਿਤ ਨਹੀਂ ਹੁੰਦੀ ਤੇ ਨਾਂ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ; ਸਗੋਂ ਸੂਚਨਾ ਦਾ ਸੰਚਾਰ ਦੋ ਔਬਜ਼ਰਵਰਾਂ ਦੁਆਰਾ ਨਾਪਣ ਦੀ ਪ੍ਰਕ੍ਰਿਆ ਅੰਦਰ ਹੁੰਦਾ ਹੈ (ਇੱਕ ਔਬਜ਼ਰਵਰ ਨੇ ਦੂਜੇ ਔਬਜ਼ਰਵਰ ਤੱਕ ਸੰਕੇਤ ਭੇਜਣਾ ਹੁੰਦਾ ਹੈ, ਜੋ ਪ੍ਰਕਾਸ਼ ਦੀ ਸਪੀਡ ਤੋਂ ਵੱਧ ਤੇਜ਼ ਸਫਰ ਨਹੀਂ ਕਰ ਸਕਦਾ)। ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਉਲੰਘਣਾ ਨਹੀਂ ਕਰਦਾ।[47][48] 1959 ਵਿੱਚ, ਬੋਹਮ ਅਤੇ ਯਾਕਿਰਅਹਾਰੋਨੋਵ ਨੇ ਅਹਾਰੋਨੋਵ-ਬੋਹਮ ਇੱਫੈਕਟ ਉੱਤੇ ਇੱਕ ਪੇਪਰ ਛਾਪਿਆ[49] ਜੋ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਪੁਟੈਂਸ਼ਲਾਂ ਦੇ ਰੁਤਬੇ ਪ੍ਰਤਿ ਸਵਾਲ ਕਰਦਾ ਸੀ। ਸਪੈਸ਼ਲ ਰਿਲੇਟੀਵਿਟੀ ਅੰਦਰ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੀਲਡ ਟੈਂਸਰ ਅਤੇ ਇਲੈਕਟ੍ਰੋਮੈਗਨੈਟਿਕ ਫੋਰ-ਪੁਟੈਂਸ਼ਲ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀਆਂ ਦੋਵੇਂ ਹੀ ਲਾਗੂ-ਹੋਣ-ਯੋਗ ਹੁੰਦੀਆਂ ਹਨ, ਪਰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅੰਦਰ ਪੁਟੇਂਸ਼ਲ ਹੈਮਿਲਟੋਨੀਅਨ (ਦੇਖੋ ਉੱਤੇ) ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਂਦੇ ਹਨ ਅਤੇ ਚਾਰਜ ਕੀਤੇ ਹੋਏ ਕਣਾਂ ਦੀ ਗਤੀ ਤੇ ਅਸਰ ਪਾਉਂਦੇ ਹਨ ਭਾਵੇਂ ਜ਼ੀਰੋ ਫੀਲਡਾਂ ਵਾਲ਼ੇ ਖੇਤਰ ਹੀ ਹੋਣ। 1964 ਵਿੱਚ, ਬੈੱਲ ਦੀ ਥਿਊਰਮ ਇੱਕ ਪੇਪਰ ਵਿੱਚ ਛਾਪੀ ਗਈ ਜੋ EPR ਪੈਰਾਡੌਕਸ (ਪਹੇਲੀ) ਉੱਤੇ ਸੀ।,[50] ਜੋ ਦਿਖਾ ਰਹੀ ਸੀ ਕਿ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨੂੰ ਲੋਕਲ ਹਿਡਨ ਵੇਰੀਏਬਲ ਥਿਊਰੀਆਂ ਤੋਂ ਵਿਓਂਤਵਬੰਦ ਨਹੀਂ ਕੀਤਾ ਜਾ ਸਕਦਾ ਜੇਕਰ ਸਥਾਨਿਕਤਾ ਨੂੰ ਕਾਇਮ ਰੱਖਣਾ ਹੀ ਹੋਵੇ।
ਲੈਂਬ ਸ਼ਿਫਟ
ਫਰਮਾ:Main article 1947 ਵਿੱਚ ਲੈਂਬ ਸ਼ਿਫਟ ਖੋਜੀ ਗਈ ਸੀ।: ਜੋ ਹਾਈਡ੍ਰੋਜਨ ਦੇ ਲੈਵਲਾਂ 2S1/2 ਅਤੇ 2P1/2 ਦਰਮਿਆਨ ਇੱਕ ਛੋਟਾ ਫਰਕ ਸੀ, ਜਿਸਦਾ ਕਾਰਣ ਇਲੈਕਟ੍ਰੌਨ ਅਤੇ ਵੈਕੱਮ ਦਰਮਿਆਨ ਪਰਸਪਰ ਕ੍ਰਿਆ ਹੁੰਦੀ ਹੈ। ਲੈਂਬ ਅਤੇ ਰੇਦਰਫੋਰਡ ਨੇ ਮਾਈਕ੍ਰੋਵੇਵ ਰੇਡੀਏਸ਼ਨ ਦੁਆਰਾ ਸਮੂਹਿਕ ਰੇਡੀਓ-ਫ੍ਰੀਕੁਐਂਸੀ ਦੁਆਰਾ ਹਾਈਡ੍ਰੋਜਨ ਦੇ sup>2S1/2 ਅਤੇ 2P1/2 ਲੈਵਲਾਂ ਦੀ ਤਬਦੀਲੀ ਨੂੰ ਨਾਪਿਆ।[51] ਬੇਥ ਦੁਆਰਾ ਲੈਂਬ ਸ਼ਿਫਟ ਦੀ ਇੱਕ ਵਿਆਖਿਆ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਹੈ। ਪ੍ਰਭਾਵ ਉੱਤੇ ਪੇਪਰ ਸ਼ੁਰੂਆਤੀ 1950ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ ਛਾਪੇ ਗਏ ਸਨ।[52]
ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦਾ ਵਿਕਾਸ
- 1943 ਟੋਮੋਨਾਗਾ ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਵਿੱਚ ਅਸਰਦਾਰ ਪੁਨਰਮਾਨਕੀਕਰਨ (ਰੀਨੌਰਮਲਾਇਜ਼ੇਸ਼ਨ) ਉੱਤੇ ਕੰਮ ਕਰਨਾ ਸ਼ੁਰੂ ਕਰਦਾ ਹੈ।
- 1947 ਸ਼ਵਿੰਗਰ ਇਲੈਕਟ੍ਰੌਨ ਦੀ ਨਿਯਮ-ਵਿਰੁੱਧ ਮੈਗਨੈਟਿਕ ਮੋਮੈਂਟ ਦਾ ਹਿਸਾਬ ਲਗਾਉਂਦਾ ਹੈ। ਕੁੱਚ ਨਿਯਮਵਿਰੁੱਧ ਚੁੰਬਕੀ ਇਲੈਕਟ੍ਰੌਨ ਮੋਮੈਂਟਮ ਨਾਪਦਾ ਹੈ, ਜੋ ਕੁਆਂਟਮ ਇਲੈਕਟ੍ਰੋਡਾਇਨਾਮਿਕਸ ਦੇ ਮਹਾਨ ਅਨੁਮਾਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਅਨੁਮਾਨ ਦਾ ਸਬੂਤ ਹੈ।
ਇਹ ਵੀ ਦੇਖੋ
ਪ੍ਰਮਾਣੂ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅਤੇ ਰਸਾਇਣ ਵਿਗਿਆਨ
ਗਣਿਤਿਕ ਭੌਤਿਕ ਵਿਗਿਆਨ
- ਕੁਆਂਟਮ ਸਪੇਸਟਾਈਮ
- ਸਪਿੱਨ ਰਿਸ਼ਤੇ
- ਸਪਿੱਨੌਰ ਬੰਡਲ
- ਭੌਤਿਕੀ ਸਪੇਸ ਦੇ ਅਲਜਬਰੇ ਵਿੱਚ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ
- ਕੈਸਮੀਰ ਇਨਵੇਰੀਅੰਟ
- ਕੈਸਮੀਰ ਓਪਰੇਟਰ
- ਵਿਗਨਰ ਡੀ-ਮੈਟ੍ਰਿਕਸ
ਕਣ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅਤੇ ਕੁਆਂਟਮ ਫੀਲਡ ਥਿਊਰੀ
- ਜ਼ਿੱਟ੍ਰਬਿਵੇਗੰਗ
- ਦੋ-ਸ਼ਰੀਰ ਡੀਰਾਕ ਇਕੁਏਸ਼ਨ
- ਸਾਪੇਖਿਕ ਭਾਰੀ ਆਇਓਨ ਕੋਲਾਈਡ੍ਰ
- ਸਮਰੂਪਤਾ (ਭੌਤਿਕ ਵਿਗਿਆਨ)
- ਪੇਅਰਟੀ (ਭੌਤਿਕ ਵਿਗਿਆਨ)
- CPT ਇਨਵੇਰੀਅੰਸ
- ਚੀਰੈਲਿਟੀ (ਭੌਤਿਕ ਵਿਗਿਆਨ)
- ਸਟੈਂਡਰਡ ਮਾਡਲ
- ਗੇਜ ਥਿਊਰੀ
- ਟੈਕਿਔਨ
- ਲੌਰੰਟਜ਼ ਉਲੰਘਣਾ ਵਾਸਤੇ ਅਜੋਕੀਆਂ ਖੋਜਾਂ
ਫੁੱਟਨੋਟਸ
ਹਵਾਲੇ
ਨੋਟਸ
ਚੋਣਵੀਆਂ ਕਿਤਾਬਾਂ
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite bookਫਰਮਾ:ਮੁਰਦਾ ਕੜੀ
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
ਕੁਆਂਟਮ ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਗਰੁੱਪ ਥਿਊਰੀ
ਚੋਣਵੇਂ ਪੇਪਰ
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite news
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite news
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
- ਫਰਮਾ:Cite journal
ਹੋਰ ਲਿਖਤਾਂ
ਸਾਪੇਖਿਕ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਫੀਲਡ ਥਿਊਰੀ
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
ਕੁਆਂਟਮ ਥਿਊਰੀ ਅਤੇ ਆਮ ਉਪਯੋਗ
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite book
ਬਾਹਰੀ ਲਿੰਕ
- ਫਰਮਾ:Cite book
- ਫਰਮਾ:Cite news
- ਫਰਮਾ:Cite arXiv
- ਫਰਮਾ:Cite news
- ਫਰਮਾ:Cite news
- J. B. Calvert (2003) The Particle Electron and Thomas Precession
- S.N. Arteha Spin and the Thomas precession
- ↑ ਫਰਮਾ:Cite book
- ↑ 2.0 2.1 2.2 2.3 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ 6.0 6.1 ਫਰਮਾ:Cite book
- ↑ 7.0 7.1 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite journal; ਫਰਮਾ:Cite journal; ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite arXiv
- ↑ 11.0 11.1 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite news
- ↑ ਫਰਮਾ:Cite book
- ↑ 16.0 16.1 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ 19.0 19.1 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ 24.0 24.1 ਫਰਮਾ:Cite book.
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite arXiv
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite arXiv
- ↑ ਫਰਮਾ:Cite arXiv
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book ਧਿਆਨ ਦੇਓ: ਕੁੱਝ ਵਿਦਵਾਨ, ਜਿਹਨਾਂ ਵਿੱਚ ਪੈਨਰੋਜ਼ ਵੀ ਸ਼ਾਮਿਲ ਹੈ, ਇਸ ਪਰਿਭਾਸ਼ਾ ਵਿੱਚ ਲੈਟਿਨ ਅੱਖਰ ਵਰਤਦੇ ਹਨ, ਭਾਵੇਂ ਸਪੇਸਟਾਈਮ ਅੰਦਰ ਵੈਕਟਰਾਂ ਅਤੇ ਟੈਂਸਰਾਂ ਵਾਸਤੇ ਗ੍ਰੀਕ ਅੱਖਰਾਂ ਨੂੰ ਵਰਤਣ ਦੀ ਪ੍ਰੰਪਰਾ ਹੈ
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ 40.0 40.1 ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book Chapter 23: The entangled quantum world
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite journal
- ↑ ਫਰਮਾ:Cite journal ਫਰਮਾ:Cite journalਫਰਮਾ:Cite journal ਫਰਮਾ:Cite journal ਫਰਮਾ:Cite journal
ਹਵਾਲੇ ਵਿੱਚ ਗ਼ਲਤੀ:<ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found