ਗਣਿਤਕ ਸਬੂਤ

ਗਣਿਤ ਦੀ ਸਟੇਟਮੈਂਟ ਦਾ ਤਰਕਪੂਰਨ ਦਲੀਲ ਸਬੂਤ ਹੈ। ਇਸ ਦੀ ਦਲੀਲ ਲਈ ਥਿਓਰਮ ਜਾਂ ਹੋਰ ਪਹਿਲਾ ਹੀ ਸਥਾਪਿਤ ਸਿਧਾਂਤ ਨੂੰ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸਿਧਾਂਤ ਤੌਰ 'ਤੇ ਗਣਿਤਕ ਸਬੂਤ ਨੂੰ ਸਵੈ-ਸਪਸ਼ਟ ਕਰਨ ਲਈ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਕਿ ਪਹਿਲਾ ਹੀ ਅਟੱਲ ਸਚਾਈ ਜਾਂ ਪ੍ਰਮਾਣਿਕ ਤੱਥ ਹੈ। ਸਬੂਤ ਤਰਕਪੂਰਨ ਤਰਕ ਦੀ ਮਿਸਾਲ ਹਨ ਅਤੇ ਪ੍ਰਯੋਗਿਕ ਦਲੀਲ ਤੋਂ ਵੱਖ ਹੈ। ਗਣਿਤਕ ਸਬੂਤ ਸਟੇਟਮੈਂਟ ਹਮੇਸਾ ਸਚਾਈ ਹੈ ਇਸ ਨੂੰ ਸਬੂਤ ਪ੍ਰਦਰਸ਼ਿਤ ਕਰਦਾ ਹੈ। ਸਬੂਤ ਸ਼ਬਦ ਲਤੀਨੀ ਭਾਸ਼ਾ ਦਾ ਸ਼ਬਦ probare ਤੋਂ ਹੈ। ਸਭ ਤੋਂ ਪਹਿਲ ਕਿਸੇ ਵਿਚਾਰ ਨੂੰ ਪ੍ਰਦਰਸ਼ਨ ਕਰਨ ਲਈ ਜਿਓਮੈਟਰੀ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਸੀ ਇਹ ਇਸ ਤਰ੍ਹਾਂ ਸੀ ਜਿਸ ਤਰ੍ਹਾਂ ਜਮੀਨ ਦੀ ਮਿਣਤੀ ਕਰਨੀ। ਹਿਸਾਬ ਸਬੂਤ ਜ਼ਿਆਦਾਤਰ ਯੂਨਾਨ ਜਾਂ ਭਾਰਤੀ ਗਣਿਤ ਵਿਗਿਆਨੀ ਦੀ ਦੇਣ ਹੈ। ਥੇਲਜ਼ (624–546 ਬੀ.ਸੀ) ਨੇ ਬਹੁਤ ਸਾਰੀਆਂ ਥਿਊਰਮਾਂ ਦੇ ਸਬੂਤ ਪੇਸ਼ ਕੀਤੇ। ਇਓਡੋਕਸ(408–355 ਬੀ.ਸੀ.) ਨੇ ਬਹੁਤ ਸਾਰੀਆਂ ਥਿਓਰਮ ਦੱਸੀਆਂ ਪਰ ਉਹ ਸਬੂਤ ਪੇਸ਼ ਨਾ ਕਰ ਸਕਿਆ। ਅਰਸਤੂ (384–322 ਬੀ.ਸੀ.) ਨੇ ਕਿਹਾ ਕਿ ਪ੍ਰੀਭਾਸ਼ਾ ਨੂੰ ਕਿਸੇ ਪਹਿਲਾ ਹੀ ਪ੍ਰਮਾਣਿਤ ਧਾਰਨਾ ਨਾਲ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਗਣਿਤਕ ਸਬੂਧ ਨੂੰ ਯੂਕਲਿਡ ਨੇ ਅਟੱਲ ਸਚਾਈ ਜਾਂ ਪ੍ਰਮਾਣਿਕ ਤੱਥ ਨੂੰ ਖੋਜਿਆ ਜੋ ਅੱਜ ਵੀ ਸੱਚ ਹੈ।
ਢੰਗ
ਸਿਧਾ ਸਬੂਤ
ਪਹਿਲਾ ਹੀ ਪ੍ਰਮਾਣਿਤ ਤੱਥ ਜਾ ਦਲੀਲਾਂ ਦੇ ਅਧਾਰ ਤੇ ਹੱਲ ਕੱਢਿਆ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਦੋ ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਹਮੇਸ਼ਾ ਜਿਸਤ ਹੁੰਦਾ ਹੈ।
- ਮੰਨ ਲਓ ਦੋ ਜਿਸਤ ਪੂਰਨ ਸੰਖਿਆ x ਅਤੇ y ਹਨ।
- ਜਿਸਤ ਪੂਰਨ ਸੰਖਿਆ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖ ਸਕਦੇ ਹਾਂ x = 2a ਅਤੇ y = 2b ਜਿਥੇ a ਅਤੇ b ਦੋ ਪੂਰਨ ਸੰਖਿਆ ਹਨ।
- ਇਹਨਾਂ ਦਾ ਜੋੜ x + y = 2a + 2b = 2(a+b)
- ਇਸਲਈ x+y ਦਾ ਇੱਕ ਗੁਣਾਕ 2 ਹੈ ਇਸ ਲਈ ਇਹ ਸਬੂਤ ਹੈ ਕਿ ਦੋ ਜਿਸਤ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਦਾ ਜੋੜ ਵੀ ਜਿਸਤ ਹੁੰਦਾ ਹੈ।
ਸਿੱਟੇ ਕੱਢਣ ਦਾ ਸਿਧਾਂਤ
ਇਹ ਸਬੂਤ ਤਰਕ ਦਾ ਸਿਧਾਂਤ ਨਹੀਂ ਹੈ। ਇੱਕ ਇਕੱਲਾ ਅਧਾਰ ਕੇਸ ਸਿੱਧ ਕਰਨ ਤੋਂ ਬਾਅਦ, ਸਿੱਟੇ ਕੱਢਣ ਦਾ ਸਿਧਾਂਤ ਦੀ ਵਰਤੋਂ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਸਭ ਤੋਂ ਪਹਿਲਾ ਫਰਮਾ:Math ਲਈ ਸਿੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਇਹ ਸੱਚ ਹੈ। ਫਿਰ ਮੰਨ ਲਈ ਫਰਮਾ:Math ਸੱਚ ਹੈ ਅਤੇ ਇਸ ਦੀ ਵਰਤੋਂ ਕਰ ਕੇ ਇਹ ਸਿੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਫਰਮਾ:Math ਵੀ ਸੱਚ ਹੈ। ਉਦਾਹਰਨ ਲਈ: ਸਾਰੀ ਪੂਰਣ ਸੰਖਿਆਵਾਂ ਜੋ ਫਰਮਾ:Math ਹਨ ਟਾਂਕ ਹੁੰਦੀਆਂ ਹਨ।
- (i) ਜੇ ਫਰਮਾ:Math, ਫਰਮਾ:Math, ਅਤੇ ਫਰਮਾ:Math ਇੱਕ ਟਾਂਕ ਸੰਖਿਆ ਹੈ। ਇਸਲਈ ਫਰਮਾ:Math ਸੱਚ ਹੈ।
- (ii) ਕਿਸੇ ਫਰਮਾ:Math ਲਈ ਫਰਮਾ:Math ਹੈ ਤਾਂ, ਫਰਮਾ:Math। ਜੇਫਰਮਾ:Math ਟਾਂਕ ਹੈ ਤਾਂ ਫਰਮਾ:Math ਵੀ ਟਾਂਕ ਹੀ ਹੋਵੇਗਾਂ ਕਿਉਂਕੇ ਕਿਸੇ ਵੀ ਟਾਂਕ ਸੰਖਿਆ ਵਿੱਚ ਫਰਮਾ:Math ਜੋੜਣ ਨਾਲ ਟਾਂਕ ਸੰਖਿਆ ਹੀ ਹੁੰਦੀ ਹੈ। ਇਸਲਈ ਫਰਮਾ:Math ਸੱਚ ਹੈ ਜੇ ਫਰਮਾ:Math ਸੱਚ ਹੈ।
- ਇਸਲਈ ਸਾਰੇ ਪ੍ਰਕ੍ਰਿਤਕ ਸੰਖਿਆ ਫਰਮਾ:Math ਲਈ ਫਰਮਾ:Math ਟਾਂਕ ਸੰਖਿਆ ਹੈ।.
ਰੂਪਾਂਤਰ ਦਾ ਢੰਗ
ਜੇ p ਹੈ ਤਾਂ q" ਹੈ ਪ੍ਰੀਭਾਸ਼ਾ ਤੋਂ ਜੇ q ਨਹੀਂ ਹੈ ਤਾਂ p ਨਹੀਂ ਹੈ। ਇਸ ਨੂੰ ਰੂਪਾਂਤਰ ਦਾ ਢੰਗ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ x ਪੂਰਣ ਸੰਖਿਆ ਹੈ ਤਾਂ,ਜੇ x² ਜਿਸਤ ਸੰਖਿਆ ਹੈ ਤਾਂ x ਵੀ ਜਿਸਤ ਹੈ।
- ਮੰਨ ਲਉ x ਜਿਸਤ ਨਹੀਂ ਹੈ ਤਾਂ x ਟਾਂਕ ਹੋਵੇਗੀ ਦੋ ਟਾਂਕ ਸੰਖਿਆਵਾਂ ਦਾ ਗੁਣਨਫਲ ਟਾਂਕ ਹੀ ਹੁੰਦਾ ਹੈ।
- ਇਸ ਲਈ x² = x•x ਟਾਂਕ ਹੈ ਤਦ x² ਜਿਸਤ ਨਹੀਂ ਹੈ।
ਖੰਡਨ ਦਾ ਸਿਧਾਂਤ
ਜੇ ਕੋਈ ਕਥਨ ਸੱਚਾ ਹੈ ਤਾਂ ਖੰਡਨ ਦਾ ਤਰਕ ਪੈਂਦਾ ਹੁੰਦਾ ਹੈ ਤਦ ਕਥਨ ਝੂਠਾ ਹੈ। ਜਿਵੇਂ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।
- ਮੰਨ ਲਉ ਇਕਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ ਤਾਂ ਪ੍ਰੀਭਾਸ਼ਾ ਮੁਤਾਬਕ ਜਿਥੇ a ਅਤੇ b ਦੋ ਪੂਰਨ ਸੰਖਿਆਵਾਂ ਹਨ ਜਿਹਨਾਂ ਦਾ ਕੋਈ ਵੀ ਸਾਂਝਾ ਗੁਣਨਖੰਡ ਨਹੀਂ ਹੈ।
- ਤਦ .
- ਦੋਨੇ ਪਾਸੇ ਵਰਗ ਲੈਣ ਤੇ
- 2b2 = a2
ਜਿਵੇਂ ਖੱਬੇ ਪਾਸੇ ਨੂੰ 2 ਵੰਡਦਾ ਹੈ ਇਸਲਈ ਸੱਜੇ ਪਾਸੇ ਨੂੰ ਵੀ ਵੰਡੇਗਾ।
- ਇਸਲਈ a2 ਇੱਕ ਜਿਸਤ ਸੰਖਿਆ ਹੈ ਜਿਸ ਦਾ ਮਤਲਵ ਹੈ ਕਿ a ਵੀ ਜਿਸਤ ਹੈ ਇਸਲਈ ਅਸੀਂ a = 2c ਲਿਖ ਸਕਦੇ ਹਾਂ ਜਿਥੇ c ਇੱਕ ਪੂਰਨ ਸੰਖਿਆ ਹੈ।
ਪਹਿਲੀ ਸਮੀਕਰਨ ਵਿੱਚ ਮੁੱਲ ਰੱਕਣ ਤੇ,
- 2b2 = (2c)2 = 4c2
- ਦੋਨੋਂ ਪਾਸਿਆ ਨੂੰ 2 ਨਾਲ ਭਾਗ ਦੇਣ ਤੇ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ
- b2 = 2c2
- ਪ੍ਰੰਤੂ ਪਹਿਲਾ ਵਾਲੀ ਤਰਕ ਮੁੁਤਾਬਕ b2 ਵੀ 2 ਨਾਲ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ ਸੋ b ਵੀ ਜਿਸਤ ਹੈ।
- ਜੇ a ਅਤੇ b ਦੋਨੋਂ ਜਿਸਤ ਸੰਖਿਆਵਾਂ ਹਨ ਤਾਂ ਦੋਨੋਂ ਦਾ ਸਾਂਝਾ ਗੁਣਨਖੰਡ 2 ਹੋਵੇਗਾ ਜੋ ਕਿ ਸਾਡੀ ਮੰਨੀ ਹੋਈ ਦਾ ਖੰਡਨ ਹੈ ਇਸ ਲਈ ਇੱਕ ਅਪਰਿਮੇਯ ਸੰਖਿਆ ਹੈ।