ਗਰੈਵਿਟੀ ਦੀ ਲਵਲੌਕ ਥਿਊਰੀ

testwiki ਤੋਂ
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ

ਫਰਮਾ:Spacetime ਫਰਮਾ:Distinguish ਥਿਊਰਿਟੀਕਲ ਫਿਜ਼ਿਕਸ ਅੰਦਰ, ਗਰੈਵਿਟੀ ਦੀ ਲਵਲੌਕ ਥਿਊਰੀ (ਅਕਸਰ ਜਿਸਨੂੰ ਲਵਲੌਕ ਗਰੈਵਿਟੀ ਦੇ ਤੌਰ ਤੇ ਵੀ ਪੁਕਾਰਿਆ ਜਾਂਦਾ ਹੈ), 1971 ਵਿੱਚ ਡੇਵਿਡ ਲਵਲੌਕ ਦੁਆਰਾ ਪੇਸ਼ ਕੀਤੀ ਆਈਨਸਟਾਈਨ ਦੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਇੱਕ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਹੈ।[1] ਇਹ, ਮਨਚਾਹੀ ਸੰਖਿਆ ਦੇ ਸਪੇਸਟਾਈਮ ਅਯਾਮਾਂ D ਅੰਦਰ ਗਤੀ ਦੀਆਂ ਸੁਰੱਖਿਅਤ ਦੂਜੇ ਦਰਜੇ ਦੀਆੰ ਇਕੁਏਸ਼ਨਾਂ ਪੈਦਾ ਕਰਨ ਵਾਲੀ ਗਰੈਵਿਟੀ ਦੀ ਸਭ ਤੋਂ ਜਿਆਦਾ ਆਮ ਥਿਊਰੀ ਹੈ। ਇਸ ਸਮਝ ਵਿੱਚ, ਲਵਲੌਕ ਦੀ ਥਿਊਰੀ ਆਈਨਸਟਾਈਨ ਦੀ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਉੱਚ-ਅਯਾਮਾਂ ਤੱਕ ਕੁਦਰਤੀ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਹੈ। ਤਿੰਨ ਅਤੇ ਚਾਰ ਅਯਾਮਾਂ (ਡਾਇਮੈਨਸ਼ਨਾਂ) (D = 3, 4) ਵਿੱਚ, ਲਵਲੌਕ ਦੀ ਥਿਊਰੀ ਆਈਨਸਟਾਈਨ ਦੀ ਥਿਊਰੀ ਨਾਲ ਮਿਲਦੀ ਜੁਲਦੀ ਹੋ ਜਾਂਦੀ ਹੈ, ਪਰ ਉੱਚ-ਅਯਾਮਾਂ ਵਿੱਚ ਦੋਵੇਂ ਥਿਊਰੀਆਂ ਵੱਖਰੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ। ਦਰਅਸਲ, D > 4 ਲਈ, ਆਈਨਸਟਾਈਨ ਦੀ ਗਰੈਵਿਟੀ ਲਵਲੌਕ ਗਰੈਵਿਟੀ ਦੇ ਇੱਕ ਖਾਸ ਮਾਮਲੇ (ਕੇਸ) ਦੇ ਤੌਰ ਤੇ ਹੁੰਦੀ ਸੋਚੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿਉਂਕਿ ਆਈਨਸਟਾਈਨ-ਹਿਲਬ੍ਰਟ ਐਕਸ਼ਨ ਉਹਨਾਂ ਕਈ ਰਕਮਾਂ ਵਿੱਚੋਂ ਇੱਕ ਹੈ ਜੋ ਲਵਲੌਕ ਐਕਸ਼ਨ ਰਚਦੇ ਹਨ।

ਲਗ੍ਰਾਂਜੀਅਨ ਡੈਂਸਟੀ

ਥਿਊਰੀ ਦਾ ਲਗ੍ਰਾਂਜੀਅਨ ਅਯਾਮਿਕ ਤੌਰ ਤੇ ਵਧਾਈਆਂ ਹੋਈਆਂ ਇਲੁਰ ਘਣਤਾਵਾਂ ਦੇ ਇੱਕ ਜੋੜ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ;

=g n=0tαn n,n=12nδα1β1...αnβnμ1ν1...μnνnr=1nRμrνrαrβr

ਜਿੱਥੇ Rμναβ ਰੀਮਾਨੀਅਨ ਟੈਂਸਰ ਪ੍ਰਸਤੁਤ ਕਰਦਾ ਹੈ, ਅਤੇ ਜਿੱਥੇ ਸਰਵ ਸਧਾਰਨਕ੍ਰਿਤ ਕ੍ਰੋਨੈੱਕਰ ਡੈਲਟਾ δ ਐਂਟੀ-ਸਮਿੱਟ੍ਰਿਕ ਗੁਣਨਫਲ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ;

δα1β1αnβnμ1ν1...μnνn=n!δ[α1μ1δβ1ν1δαnμnδβn]νn.

ਵਿੱਚਲੀ ਹਰੇਕ ਰਕਮ n, 2n ਅਯਾਮਾਂ ਅੰਦਰ, ਇਲੁਰ ਡੈਂਸਟੀ (ਘਣਤਾ) ਦੀ ਅਯਾਮਿਕ ਤੌਰ ਤੇ ਸ਼ਾਖਾ ਨਾਲ ਸਬੰਧ ਰੱਖਦੀ ਹੈ, ਤਾਂ ਜੋ ਇਹ ਸਿਰਫ n < D/2 ਲਈ ਗਤੀ ਦੀਆਂ ਸਮੀਕਰਨਾਂ ਪ੍ਰਤਿ ਹੀ ਯੋਗਦਾਨ ਪਾਉਣ। ਇਸਦੇ ਫਲਸਰੂਪ, ਆਮ ਸਮਝ ਦੀ ਕਮੀ ਬਗੈਰ, ਉੱਪਰ ਲਿਖੀ ਇਕੁਏਸ਼ਨ ਅੰਦਰਲਾ t ਜਿਸਤ ਅਯਾਮਾਂ ਲਈ ਫਰਮਾ:Nowrap ਹੁੰਦਾ ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ ਅਤੇ ਬਿਖਮ ਅਯਾਮਾਂ ਲਈ ਫਰਮਾ:Nowrap ਲਿਆ ਜਾ ਸਕਦਾ ਹੈ।

ਕਪਲਿੰਗ ਸਥਿਰਾਂਕ

ਲਗ੍ਰਾਂਜੀਅਨ ਅੰਦਰਲੇ ਕਪਲਿੰਗ ਸਥਿਰਾਂਕ αn, [length]2nD, ਦੇ ਅਯਾਮ ਰੱਖਦੇ ਹਨ, ਭਾਵੇਂ ਲਗ੍ਰਾਂਜੀਅਨ ਘਣਤਾ ਨੂੰ ਪਲੈਂਕ ਸਕੇਲ ਦੀਆਂ ਯੂਨਿਟਾਂ ਵਿੱਚ ਨੌਰਮਲਾਇਜ਼ ਕਰਨਾ ਆਮ ਗੱਲ ਹੋ ਗਈ ਹੈ।

α1=(16πG)1=lP2D.

ਗੁਣਨਫਲ ਨੂੰ ਵਿੱਚ ਵਿਸਥਾਰ ਕਰਦੇ ਹੋਏ, ਲਵਲੌਕ ਲਗ੍ਰਾਂਜੀਅਨ ਇਹ ਰੂਪ ਲੈ ਲੈਂਦਾ ਹੈ;:=g (α0+α1R+α2(R2+RαβμνRαβμν4RμνRμν)+α3𝒪(R3)), ਜਿੱਥੇ ਕਪਲਿੰਗ α0 ਨੂੰ ਕੌਸਮੌਲੌਜੀ ਸਥਿਰਾਂਕ Λ ਨਾਲ ਸਬੰਧਤ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ, ਜਦੋਂਕਿ n ≥ 2 ਵਾਲੇ αn ਉਹਨਾਂ ਵਾਧੂ ਰਕਮਾਂ ਦੇ ਕਪਲਿੰਗ ਸਥਿਰਾਂਕ ਹੁੰਦੇ ਹਨ ਜੋ ਰੀਮਾਨੀਅਨ ਟੈਂਸਰ Rμναβ ਦੀਆਂ ਉੱਚ ਦਰਜੇ ਦੀਆਂ ਸਿਕੁੜਨਾਂ ਵਾਲੀਆਂ ਆਈਨਸਟਾਈਨ ਥਿਊਰੀ ਪ੍ਰਤਿ ਅਲਟ੍ਰਾ-ਵਾਇਲਟ ਸਿਕੁੜਨਾਂ ਪ੍ਰਸਤੁਤ ਕਰਦੇ ਹਨ। ਖਾਸ ਕਰਕੇ, ਦੂਜੇ ਦਰਜੇ ਦੀ ਰਕਮ

2=R2+RαβμνRαβμν4RμνRμν

ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਕੁਆਡ੍ਰੈਟਿਕ (ਦੋਘਾਤੀ) ਗਾਓਸ-ਬੋਨੈੱਟ ਰਕਮ ਹੁੰਦੀ ਹੈ, ਜੋ ਚਾਰ-ਅਯਾਮੀ ਇਲੁਰ ਡੈਂਸਟੀ ਦਾ ਅਯਾਮਿਕ ਤੌਰ ਤੇ ਵਧਾਇਆ ਹੋਇਆ ਵਰਜ਼ਨ ਹੈ।

ਹੋਰ ਸੰਦ੍ਰਭ

ਕਿਉਂਕਿ ਲਵਲੌਕ ਕਾਰਜ, ਹੋਰਾਂ ਵਿਚਕਾਰ, ਕੁਆਡ੍ਰੈਟਿਕ ਗਾਓਸ-ਬੋਨੈੱਟ ਰਕਮ (ਯਾਨਿ ਕਿ, ਚਾਰ-ਅਯਾਮੀ ਇਲੁਰ ਲੱਛਣ ਜੋ D ਅਯਾਮਾਂ ਤੱਕ ਵਧਾਇਆ ਗਿਆ ਹੁੰਦਾ ਹੈ), ਇਹ ਆਮਤੌਰ ਤੇ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿ ਲਵਲੌਕ ਥਿਊਰੀ ਗਰੈਵਿਟੀ ਦੇ ਪ੍ਰੇਰਿਤ ਮਾਡਲਾਂ ਵਿੱਚੋਂ ਸਟਰਿੰਗ ਥਿਊਰੀ ਨਾਲ ਮਿਲਦੀ ਹੈ। ਅਜਿਹਾ ਇਸਲਈ ਹੈ ਕਿ ਇੱਕ ਕੁਆਡਰੈਟਿਕ ਰਕਮ ਹੇਟ੍ਰੌਟਿਕ ਸਟਰਿੰਗ ਥਿਊਰੀ ਦੇ ਘੱਟ ਊਰਜਾ ਪ੍ਰਭਾਵੀ ਕਾਰਜ ਵਿੱਚ ਮੌਜੂਦ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਹ M-ਥਿਊਰੀ ਦੀਆਂ ਛੇ-ਡਾਇਮੈਨਸ਼ਨਲ ਕਾਲਾਬਿ-ਯਾਓ ਕੰਪੈਕਟੀਫਿਕੇਸ਼ਨਾਂ ਵਿੱਚ ਵੀ ਦਿਸਦੀ ਹੈ। ਲਵਲੌਕ ਦੁਆਰਾ ਆਈਨਸਟਾਈਨ ਟੈਂਸਰ ਦੀ ਆਪਣੀ ਜਨਰਲਾਇਜ਼ੇਸ਼ਨ ਪ੍ਰਸਤਾਵਿਤ ਕਰਨ ਤੋਂ ਇੱਕ ਦਹਾਕੇ ਬਾਦ, ਮੱਧ 1980ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ, ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਸਟਰਿੰਗ ਥਿਊਰੀ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਕੁਆਡ੍ਰੈਟਿਕ ਗਾਓਸ-ਬੋਨੈਟ ਰਕਮ ਨੂੰ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਅੰਦਰ ਭੂਤ-ਮੁਕਤ ਹੋਣ ਵਾਲੀ ਇਸਦੀ ਵਿਸ਼ੇਸ਼ਤਾ ਵੱਲ ਖਾਸ ਧਿਆਨ ਦੇ ਕੇ ਚਰਚਾ ਕਰਨੀ ਸ਼ੁਰੂ ਕਰਨ ਲੱਗ ਗਏ ਸਨ। ਥਿਊਰੀ ਨੂੰ ਹੋਰ ਇੰਨਬਿੰਨ ਬੈਕਗ੍ਰਾਊਂਡਾਂ ਬਾਰੇ ਵੀ ਭੂਤ-ਮੁਕਤ ਹੁੰਦੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, 1985 ਵਿੱਚ ਬਾਉਲਵਾਰੇ ਅਤੇ ਡੇਸਰ ਰਾਹੀਂ ਖੋਜੇ ਸਫੈਰੀਕਲ ਤੌਰ ਤੇ ਸਮਰੂਪ ਹੱਲ ਦੀਆਂ ਸ਼ਾਖਾਵਾਂ ਵਿੱਚੋਂ ਇੱਕ ਸ਼ਾਖ ਬਾਰੇ ਬੈਕਗ੍ਰਾਊਂਡਾਂ ਬਾਰੇ। ਆਮਤੌਰ ਤੇ, ਲਵਲੌਕ ਥਿਊਰੀ ਇਹ ਅਧਿਐਨ ਕਰਨ ਲਈ ਇੱਕ ਬਹੁਤ ਹੀ ਦਿਲਚਸਪ ਸੀਨਾਰੀਓ ਪ੍ਰਸਤੁਤ ਕਰਦੀ ਹੈ ਕਿ ਗਰੈਵਿਟੀ ਦੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਕਾਰਜ ਵਿੱਚ ਉੱਚ- ਦਰਜੇ ਦੀਆਂ ਕਰਵੇਚਰ ਰਕਮਾਂ ਦੀ ਹਾਜ਼ਰੀ ਪ੍ਰਤਿ ਘੱਟ ਦੂਰੀ ਉੱਤੇ ਸਹੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਮੱਧ-2000ਵੇਂ ਦਹਾਕੇ ਵਿੱਚ, ਥਿਊਰੀ ਨੂੰ AdS/CFT ਮੇਲਜੋਲ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਉੱਚ-ਕਰਵੇਚਰ ਰਕਮਾਂ ਪੇਸ਼ ਕਰ ਰਹੇ ਪ੍ਰਭਾਵਾਂ ਨੂੰ ਪਰਖਣ ਲਈ ਇੱਕ ਪਰਖ ਅਧਾਰ ਦੇ ਤੌਰ ਤੇ ਲਿਆ ਜਾਂਦਾ ਸੀ।

ਇਹ ਵੀ ਦੇਖੋ

ਨੋਟਸ

ਫਰਮਾ:Reflist

ਹਵਾਲੇ

ਫਰਮਾ:Theories of gravitation


  1. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498.