ਗ੍ਰੇਡੀਅੰਟ

testwiki ਤੋਂ
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ
ਉੱਪਰ ਦਰਸਾਈਆਂ ਦੋਵੇਂ ਤਸਵੀਰਾਂ ਵਿੱਚ, ਫੰਕਸ਼ਨ ਦਾ ਮੁੱਲ ਕਾਲੇ ਅਤੇ ਚਿੱਟੇ ਰੰਗ ਵਿੱਚ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਾਲਾ ਉੱਚ ਮੁੱਲਾਂ ਨੂੰ ਪੇਸ਼ ਕਰਦਾ ਹੈ ਅਤੇ ਇਸ ਨਾਲ ਸਬੰਧਿਤ ਗਰੇਡੀਐਂਟ ਨੂੰ ਨੀਲੇ ਤੀਰਾਂ ਨਾਲ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਗਿਆ ਹੈ

'ਗ੍ਰੇਡੀਅੰਟ' (ਗੁੰਝਲ-ਖੋਲ੍ਹ) ਨੂੰ ਗਣਿਤ ਵਿੱਚ, ਕਈ ਡਾਇਮੈਨਸ਼ਨਾਂ ਵਾਲੇ ਕਿਸੇ ਫੰਕਸ਼ਨ ਉੱਤੇ ਕਿਸੇ ਫੰਕਸ਼ਨ ਦੇ ਇੱਕ-ਡਾਇਮੈਨਸ਼ਨ ਵਿੱਚ ਡੈਰੀਵੇਟਿਵ ਦੇ ਆਮ ਸੰਕਲਪ ਦੇ ਸਰਵ ਸਧਾਰਨ ਕਰਨ (ਜਨਰਲਾਈਜ਼ੇਸ਼ਨ) ਨੂੰ ਗਰੇਡੀਐਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਜੇਕਰ f(x1, ..., xn) ਕੋਈ ਯੂਕਿਲਡਨ ਸਪੇਸ ਵਾਲੇ ਸਟੈਂਡਰਡ ਕਾਰਟੀਜ਼ੀਅਨ “ਕੋ-ਆਰਡੀਨੇਟਾਂ” ਦੇ “ਸਕੇਲਰ-ਮੁੱਲਾਂ” ਵਾਲਾ ਡਿਫਰੈਂਸ਼ੀਅਲ ਕਰਨ ਯੋਗ ਫੰਕਸ਼ਨ ਹੋਵੇ, ਤਾਂ ਓਸ ਵੈਕਟਰ ਨੂੰ ਇਸਦਾ ਗਰੇਡੀਐਂਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦੇ ਕੰਪੋਨੈਂਟ ਜਾਂ ਹਿੱਸੇ, ਓਸ ਫੰਕਸ਼ਨ ਦੇ n ਗਿਣਤੀ ਦੇ ਪਾਰਸ਼ਲ ਡੈਰੀਵੇਟਿਵ (ਅੰਸ਼ਿਕ ਵਿਉਂਤਪੱਤੀ) ਹੋਣ। ਇਸ ਤਰ੍ਹਾਂ ਇਹ ਇੱਕ ਵੈਕਟਰ-ਮੁੱਲ ਰੱਖਣ ਵਾਲਾ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ। (ਡੇਰੀਵੇਟਿਵ ਅਜਿਹੀ ਚੀਜ਼ ਨੂੰ ਕਹਿੰਦੇ ਹਨ ਜੋ ਕਿਸੇ ਹੋਰ ਚੀਜ਼ ਤੇ ਨਿਰਭਰ ਹੁੰਦੀ ਹੈ)।

ਪਰਿਭਾਸ਼ਾ

ਕਿਸੇ ਸੜਕ ਦੀ ਢਲਾਣ ਦੇ ਨਾਪ ਲਈ ਜਾਂ ਕਿਸੇ ਹੋਰ ਭੌਤਿਕੀ ਗੁਣ ਲਈ ਸਲੋਪ ਜਾਂ ਗਰੇਡ ਨਾਮ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਰੰਗਾਂ ਦਰਮਿਆਨ ਕ੍ਰਮ ਦੀ ਲੜੀ ਲਈ “ਕਲਰ ਗਰੇਡੀਐਂਟ” ਨਾਮ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਇਸੇ ਤਰਾਂ ਐਂਗਲ ਦੀ ਯੂਨਿਟ ਦੇ ਉੱਚਾਰਣ ਲਈ ਜਿਸ ਨੂੰ ਗੋਨ ਕਹਿੰਦੇ ਹਨ, “ਗਰੇਡੀਅਨ” ਨਾਮ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ।

ਫੰਕਸ਼ਨ ਦੇ ਗਰੇਡੀਐਂਟ ਨੂੰ ਫਰਮਾ:Math ਤਲ ਵਾਲੇ ਖੇਤਰ ਉੱਤੇ ਸੁੱਟੀ ਇੱਕ ਵੈਕਟਰ ਫੀਲਡ ਦੇ ਰੂਪ ਵਿੱਚ ਵਾਹਿਆ ਗਿਆ ਹੈ

ਕਿਸੇ ਸਕੇਲਰ ਫੰਕਸ਼ਨ f(x1, x2, x3, ..., xn) ਦੇ ਗਰੇਡੀਐਂਟ (ਜਾਂ ਗਰੇਡੀਐਂਟ ਵੈਕਟਰ ਫੀਲਡ) ਨੂੰ ∇f ਜਾਂ f ਨਾਲ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ ਜਿੱਥੇ ∇ (ਨਾਬਲਾ ਚਿੰਨ) ਵੈਕਟਰ ਡਿੱਫਰੈਸ਼ੀਅਲ ਓਪਰੇਟਰ, ਡੈੱਲ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ। ਧਾਰਨਾ ਚਿੰਨ੍ਹ "grad(f)" ਵੀ ਗਰੇਡੀਐਂਟ ਲਈ ਆਮ ਤੌਰ ਤੇ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। f ਦੇ ਗਰੇਡੀਐਂਟ ਨੂੰ ਇੱਕ ਨਿਰਾਲੀ (ਯੂਨੀਕ) ਵੈਕਟਰ ਫੀਲਡ ਦੇ ਰੂਪ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਜਿਸਦਾ ਕਿਸੇ ਵੈਕਟਰ v ਨਾਲ ਹਰੇਕ x ਬਿੰਦੂ ਉੱਤੇ ਲਿਆ ਗਿਆ ਡਾਟ-ਪ੍ਰੋਡਕਟ ਵੈਕਟਰ v ਦੀ ਦਿਸ਼ਾ ਦੇ ਨਾਲ ਨਾਲ f ਦਾ ਡਾਇਰੈਕਸ਼ਨਲ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ। ਯਾਨਿ ਕਿ

(f(x))𝐯=D𝐯f(x).

ਕਿਸੇ ਆਇਤਾਕਾਰ (ਰੈਕਟੈਂਗੁਲਰ) “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ, ਗਰੇਡੀਐਂਟ ਓਸ ਵੈਕਟਰ ਫੀਲਡ ਨੂੰ ਕਹਿੰਦੇ ਹਨ ਜਿਸਦੇ ਕੰਪੋਨੈਂਟ, f ਦੇ ਪਾਰਸ਼ਲ ਡੈਰੀਵੇਟਿਵ ਹੋਣ ;

f=fx1𝐞1++fxn𝐞n

ਜਿੱਥੇ ei ਚਿੰਨ, “ਕੋ-ਆਰਡੀਨੇਟ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਇਸ਼ਾਰਾ ਕਰ ਰਹੇ ਔਰਥਾਗਨਲ ਯੂਨਿਟ ਵੈਕਟਰ ਹਨ ਜਦੋਂ ਕੋਈ ਫੰਕਸ਼ਨ ਕਿਸੇ ਵਕਤ ਵਰਗੇ ਪੈਰਾਮੀਟਰ (ਮਾਪਦੰਡ) ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ, ਤਾਂ ਗਰੇਡੀਐਂਟ ਅਕਸਰ ਸਿਰਫ ਸਰਲਤਾ ਨਾਲ ਇਸਦੇ ਸਥਾਨਿਕ ਡੈਰੀਵੇਟਵਾਂ ਦੇ ਵੈਕਟਰ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ।

ਤਿੰਨ-ਅਯਾਮੀ ਕਾਰਟੀਜ਼ੀਅਨ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ, ਇਸ ਨੂੰ ਇੰਝ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ;

f=fx𝐢+fy𝐣+fz𝐤

ਜਿੱਥੇ i, j, k ਸਟੈਂਡਰਡ ਯੂਨਿਟ ਵੈਕਟਰ ਹਨ। ਗਰੇਡੀਐਂਟਾਂ ਲਈ ਡੈਰੀਵੇਟਿਵਾਂ ਦੀਆਂ ਆਮ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਲਾਗੂ ਰਹਿੰਦੀਆਂ ਹਨ ਜਿਵੇਂ ਲੀਨੀਅਰਟੀ (ਰੇਖਿਕਤਾ), ਪ੍ਰੋਡਕਟ ਰੂਲ, ਅਤੇ ਚੇਨ ਰੂਲ।

ਪ੍ਰੇਰਣਾ

ਕਿਸੇ ਕਮਰੇ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਸਕੇਲਰ ਫੀਲਡ T ਰਾਹੀਂ ਤਾਪਮਾਨ ਦਿੱਤਾ ਜਾਂਦਾ ਹੋਵੇ, ਤਾਂ ਹਰੇਕ ਬਿੰਦੂ (x, y, z) ਉੱਤੇ, ਤਾਪਮਾਨ T(x, y, z) ਹੋਵੇਗਾ। (ਅਸੀਂ ਇਹ ਮੰਨ ਕੇ ਚੱਲਾਂਗੇ ਕਿ ਵਕਤ ਬੀਤਣ ਤੇ ਤਾਪਮਾਨ ਨਹੀਂ ਬਦਲ ਰਿਹਾ)। ਕਮਰੇ ਵਿੱਚ ਹਰੇਕ ਬਿੰਦੂ ਉੱਤੇ, T ਦਾ ਓਸ ਬਿੰਦੂ ਉੱਤੇ ਗਰੇਡੀਐਂਟ ਇਹ ਦਿਖਾਏਗਾ ਕਿ “ਕਿਸ ਦਿਸ਼ਾ ਵਿੱਚ” ਤਾਪਮਾਨ ਸਭ ਤੋਂ ਜਿਆਦਾ ਤੇਜ਼ੀ ਨਾਲ ਵਧਦਾ ਹੈ। ਗਰੇਡੀਐਂਟ ਦੀ ਮਾਤਰਾ ਇਹ ਨਿਰਧਾਰਤ ਕਰੇਗੀ ਕਿ ਉਸ ਦਿਸ਼ਾ ਵਿੱਚ ਤਾਪਮਾਨ ਦਾ ਵਾਧਾ “ਕਿਵੇਂ” ਤੇਜ਼ ਹੁੰਦਾ ਹੈ।

ਕਿਸੇ ਸਤਹਿ ਤੇ ਵਿਚਾਰ ਕਰੋ ਜਿਸਦੀ ਕਿਸੇ ਬਿੰਦੂ (x, y) ਉੱਤੇ ਸਾਗਰ ਤਲ ਤੋਂ ਉਚਾਈ H(x, y) ਹੋਵੇ। ਕਿਸੇ ਬਿੰਦੂ ਉੱਤੇ H ਦਾ ਗਰੇਡੀਐਂਟ ਓਸ ਦਿਸ਼ਾ ਵਿੱਚ ਇਸ਼ਾਰਾ ਕਰਨ ਵਾਲਾ ਵੈਕਟਰ ਹੁੰਦਾ ਹੈ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਉਸ ਬਿੰਦੂ ਉੱਤੇ ਟੇਢੀ ਤੋਂ ਟੇਢੀ ਸਲੋਪ ਜਾਂ ਗਰੇਡ ਹੁੰਦੀ ਹੈ। ਓਸ ਬਿੰਦੂ ਉੱਤੇ ਸਲੋਪ ਦਾ ਟੇਢਾਪਣ ਗਰੇਡੀਐਂਟ ਵੈਕਟਰ ਦੀ ਮਾਤਰਾ (ਮੈਗਨੀਟਿਊਡ) ਰਾਹੀਂ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ਸਿਰਫ ਵੱਧ ਤੋਂ ਵੱਧ ਤਬਦੀਲੀ ਦੀ ਦਿਸ਼ਾ ਦਰਸਾਉਣ ਤੋਂ ਇਲਾਵਾ, ਇੱਕ ਡੌਟ-ਪ੍ਰੋਡਕਟ (ਅੰਦਰੂਨੀ ਗੁਣਨਫਲ) ਲੈ ਕੇ ਗਰੇਡੀਐਂਟ ਨੂੰ ਇਹ ਨਾਪਣ ਲਈ ਵੀ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਹੈ ਕਿ ਕਿਵੇਂ ਕੋਈ ਸਕੇਲਰ ਫੀਲਡ ਹੋਰ ਦਿਸ਼ਾਵਾਂ ਵਿੱਚ ਤਬਦੀਲ ਹੁੰਦੀ ਹੈ। ਮੰਨ ਲਓ ਕਿ ਕਿਸੇ ਪਹਾੜ ਉੱਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਢਲਾਣ 40% ਹੈ। ਜੇਕਰ ਕੋਈ ਸੜਕ ਸਿੱਧੀ ਹੀ ਪਹਾੜ ਉੱਤੇ ਜਾਵੇ, ਤਾਂ ਸੜਕ ਉੱਤੇ ਵੱਧ ਤੋਂ ਵੱਧ ਢਲਾਣ ਵੀ 40% ਹੋਵੇਗੀ। ਜੇਕਰ, ਇਸਦੀ ਵਜਾਏ, ਸੜਕ ਕਿਸੇ ਐਂਗਲ ਤੋਂ ਪਹਾੜ ਦੇ ਆਲੇ ਦੁਆਲੇ ਘੁੰਮ ਕੇ ਜਾਵੇ, ਤਾਂ ਘੱਟ ਸਲੋਪ ਪ੍ਰਾਪਤ ਕਰੇਗੀ। ਉਦਾਹਰਨ ਵਜੋਂ, ਜੇਕਰ ਸੜਕ ਅਤੇ ਪਹਾੜ ਦੀ ਉੱਪਰਲੀ ਦਿਸ਼ਾ ਦਰਮਿਆਨ, ਹੌਰੀਜ਼ੌਨਟਲ ਪਲੇਨ ਵਿੱਚ ਸੁੱਟਿਆ ਐਂਗਲ 60 ਡਿਗਰੀ ਹੋਵੇ, ਤਾਂ ਸੜਕ ਦੇ ਨਾਲ ਨਾਲ ਵੱਧ ਤੋਂ ਵੱਧ ਸਲੋਪ 20% ਹੋਵੇਗੀ, ਜੋ 60 ਡਿਗਰੀ ਦੇ ਕੋਜ਼ਾਈਨ ਦਾ 40% ਹੁੰਦਾ ਹੈ।

ਇਸ ਨਿਰੀਖਣ ਨੂੰ ਗਣਿਤਿਕ ਭਾਸ਼ਾ ਵਿੱਚ ਇਸ ਤਰ੍ਹਾਂ ਬਿਆਨ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ; ਜੇਕਰ ਪਹਾੜ ਦੀ ਉੱਚਾਈ ਦਾ ਫੰਕਸ਼ਨ H ਡਿਫਰੈਂਸ਼ੀਏਸ਼ਨ ਯੋਗ ਹੋਵੇ, ਤਾਂ H ਦੇ ਗਰੇਡੀਐਂਟ ਦਾ ਕਿਸੇ ਯੂਨਿਟ ਵੈਕਟਰ ਨਾਲ ਡੌਟ ਪ੍ਰੋਡਕਟ ਲੈਣ ਤੇ ਓਸ ਵੈਕਟਰ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ ਪਹਾੜ ਦੀ ਸਲੋਪ ਮਿਲਦੀ ਹੈ। ਹੋਰ ਸ਼ੁੱਧਤਾ ਨਾਲ ਕਹਿਣਾ ਹੋਵੇ ਤਾਂ, ਜਦੋਂ H ਡਿੱਫਰੈਸ਼ੀਏਸ਼ਨ ਯੋਗ ਹੁੰਦਾ ਹੈ, ਤਾਂ H ਦੇ ਗਰੇਡੀਐਂਟ ਦਾ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਯੂਨਿਟ ਵੈਕਟਰ ਨਾਲ ਡੌਟ ਪ੍ਰੋਡਕਟ, ਓਸ ਯੂਨਿਟ ਵੈਕਟਰ ਦੀ ਦਿਸ਼ਾ ਵਿੱਚ H ਦੇ ਦਿਸ਼ਾਈ (ਡਾਇਰੈਕਸ਼ਨਲ) ਡੈਰੀਵੇਟਿਵ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।

ਗ੍ਰੇਡੀਐਂਟ ਤੇ ਵੈਕਟਰ ਫੀਲਡ

ਆਮ ਡੈਰੀਵੇਟਿਵ ਦੇ ਵਾਂਗ ਹੀ, ਫੰਕਸ਼ਨ ਦੇ ਗਰਾਫ਼ ਦੀ ਸਪਰਸ਼ ਰੇਖਾ ਦੀ ਢਲਾਣ (ਟੇਨਜੈਂਟ ਔਫ ਸਲੋਪ) ਨੂੰ ਗਰੇਡੀਐਂਟ ਨਾਲ ਪ੍ਰਸਤੁਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਹੋਰ ਸੰਖੇਪ ਲਿਖਦੇ ਹੋਏ, ਗਰੇਡੀਐਂਟ ਓਸ ਦਿਸ਼ਾ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ ਜਿਸ ਦਿਸ਼ਾ ਵਿੱਚ ਫੰਕਸ਼ਨ ਦੇ ਵਾਧੇ ਦੀ ਦਰ ਵੱਧ ਤੋਂ ਵੱਧ ਹੋਵੇ, ਅਤੇ ਓਸ ਦਿਸ਼ਾ ਵਿੱਚ ਗਰਾਫ਼ ਦੀ ਸਲੋਪ (ਢਲਾਣ) ਨੂੰ ਇਸਦੀ ਮਾਤਰਾ (ਮੈਗਨੀਚੀਊਡ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ। “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ, ਗਰਾਫ ਪ੍ਰਤਿ ਸਪਰਸ਼-ਸਪੇਸ (ਟੇਨਜੈਂਟ ਸਪੇਸ) ਦੀ ਸਮੀਕਰਨ ਵਿੱਚ ਅਸਥਿਰ-ਅੰਕਾਂ (ਵੇਰੀਏਬਲਾਂ) ਦੇ ਗੁਣਾਂਕਾਂ (“ਕੋ-ਐਫੀਸ਼ੈਂਟਾਂ) ਨੂੰ ਗਰੇਡੀਐਂਟ ਦੇ ਕੰਪੋਨਟ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਗਰੇਡੀਐਂਟ ਦੀ ਇਹ ਗੁਣ ਨਿਰਧਾਰਣ ਕਰਨ ਵਾਲੀ ਵਿਸ਼ੇਸ਼ਤਾ ਇਸਨੂੰ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਦੀ ਮਨਮਰਜੀ ਦੀ ਚੋਣ ਤੋਂ ਮੁਕਤ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਇੱਕ “ਵੈਕਟਰ ਫੀਲਡ” ਦੇ ਰੂਪ ਵਿੱਚ ਹੁੰਦਾ ਹੈ ਜਿਸਦੇ ਕੰਪੋਨੈਂਟ ਕਿਸੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵਿੱਚ ਤਬਦੀਲ ਹੋ ਜਾਂਦੇ ਹਨ ਜਦੋਂ ਕਿਸੇ ਇੱਕ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਤੋਂ ਦੂਜੇ “ਕੋ-ਆਰਡੀਨੇਟ ਸਿਸਟਮ” ਵੱਲ ਜਾਇਆ ਜਾਂਦਾ ਹੈ।

ਹਵਾਲੇ

ਬਾਹਰੀ ਲਿੰਕ

ਫਰਮਾ:Wiktionary