ਡਾਇਮੈਂਸ਼ਨ (ਵੈਕਟਰ ਸਪੇਸ)
ਗਣਿਤ ਵਿੱਚ, ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ V ਦੀ ਡਾਇਮੈਂਸ਼ਨ, ਇਸਦੀ ਅਧਾਰ ਫੀਲਡ ਉੱਪਰ V ਦੇ ਇੱਕ ਅਧਾਰ ਦੀ ਕਾਰਡੀਨਲਟੀ (ਯਾਨਿ ਕਿ, ਵੈਕਟਰਾਂ ਦੀ ਗਿਣਤੀ) ਹੁੰਦੀ ਹੈ।[1] ਇਸਨੂੰ ਕਦੇ ਕਦੇ ਹਾਮਲ ਡਾਇਮੈਂਸ਼ਨ (ਜੌਰਜ ਹਾਮਲ ਦੇ ਨਾਮ ਤੋਂ) ਜਾਂ ਅਲਜਬ੍ਰਿਕ ਅਯਾਮ ਵੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਤਾਂ ਜੋ ਅਯਾਮ ਦੀਆਂ ਹੋਰ ਕਿਸਮਾਂ ਤੋਂ ਫਰਕ ਰਹੇ।
ਹਰੇਕ ਵੈਕਟਰ ਸਪੇਸ ਲਈ, ਇੱਕ ਬੇਸਿਸ ਫਰਮਾ:Efn ਹੁੰਦਾ ਹੈ, ਅਤੇ ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ ਦੇ ਸਾਰੇ ਬੇਸਿਸ ਇੱਕ-ਸਮਾਨ ਤੱਤਾਂ ਦੀ ਗਿਣਤੀ; ਫਰਮਾ:Efn ਰੱਖਦੇ ਹਨ, ਜਿਸਦੇ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ, ਕਿਸੇ ਵੈਕਟਰ ਸਪੇਸ ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਨਿਰਾਲੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦੀ ਹੈ। ਅਸੀਂ ਕਹਿੰਦੇ ਹਾਂ ਕਿ V, ਫਰਮਾ:Visible anchor ਹੁੰਦੀ ਹੈ ਜੇਕਰ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਸੀਮਤ ਹੋਵੇ, ਅਤੇ ਫਰਮਾ:Visible anchor ਹੈ ਜੇਕਰ ਇਸਦਾ ਅਯਾਮ ਅਨੰਤ ਹੋਵੇ।
ਫੀਲਡ F ਉੱਤੇ ਵੈਕਟਰ ਸਪੇਸ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ ਨੂੰ dimF(V) ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਾਂ [V: F] ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸਨੂੰ "F ਉੱਤੇ V ਦੀ ਡਾਇਮੈਨਸ਼ਨ" ਪੜਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਦੋਂ F ਨੂੰ ਸੰਦ੍ਰਭ ਤੋਂ ਅਦ੍ਰਿਸ਼ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੋਵੇ ਤਾਂ, dim(V) ਖਾਸਕਰ ਕੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।
ਉਦਾਹਰਨਾਂ
ਵੈਕਟਰ ਸਪੇਸ R3, ਇੱਕ ਮਿਆਰੀ ਅਧਾਰ ਦੇ ਤੌਰ ਤੇ ਇਹ ਅਯਾਮ ਰੱਖਦਾ ਹੈ,
ਅਤੇ ਇਸਲਈ, ਸਾਡੇ ਕੋਲ dimR(R3) = 3 ਹੁੰਦੀਆਂ ਹਨ। ਹੋਰ ਸਧਾਰਨ ਤੌਰ ਤੇ, dimR(Rn) = n, ਅਤੇ ਹੋਰ ਵੀ ਜਿਆਦਾ ਸਧਾਰਨ ਤੌਰ ਤੇ, ਕਿਸੇ ਫੀਲਡ F ਵਾਸਤੇ dimF(Fn) = n ਹੁੰਦੀਆਂ ਹਨ।
ਕੰਪਲੈਕਸ ਨੰਬਰ C ਇੱਕ ਵਾਸਤਵਿਕ ਅਤੇ ਇੱਕ ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਸਪੇਸ, ਦੋਵੇਂ ਹੀ ਹੁੰਦੇ ਹਨ; ਇਸਲਈ ਸਾਡੇ ਕੋਲ
dimR(C) = 2 ਅਤੇ dimC(C) = 1 ਹੁੰਦੇ ਹਨ। ਇਸਲਈ ਅਯਾਮ ਬੇਸਿਸ ਫੀਲਡ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦਾ ਹੈ।
ਡਾਇਮੈਨਸ਼ਨ 0 ਵਾਲੀ ਇੱਕੋ ਇੱਕ ਵੈਕਟਰ ਸਪੇਸ {0} ਹੁੰਦੀ ਹੈ, ਜੋ ਇਸਦੇ 0 ਤੱਤ ਦੇ ਨਾਲ ਬਣੀ ਵੈਕਟਰ ਸਪੇਸ ਹੁੰਦੀ ਹੈ।
ਤੱਥ
ਜੇਕਰ W ਕੋਈ V ਦੀ ਲੀਨੀਅਰ ਸਬ-ਸਪੇਸ ਹੋਵੇ, ਤਾਂ dim(W) ≤ dim(V) ਹੁੰਦੀ ਹੈ। ਇਹ ਦਿਖਾਉਣ ਲਈ ਕਿ ਦੋ ਸੀਮਤ-ਅਯਾਮੀ ਵੈਕਟਰ ਸਪੇਸਾਂ ਬਰਾਬਰ ਹੁੰਦੀਆਂ ਹਨ, ਅੱਗੇ ਲਿਖੀ ਕਸੌਟੀ ਅਕਸਰ ਵਰਤੀ ਜਾਂਦੀ ਹੈ: ਜੇਕਰ V ਇੱਕ ਸੀਮਤ-ਅਯਾਮੀ ਵੈਕਟਰ ਸਪੇਸ ਹੋਵੇ, ਅਤੇ W, ਅਯਾਮ(W) = ਅਯਾਮ(V) ਨਾਲ, V ਦੀ ਇੱਕ ਲੀਨੀਅਰ ਸਬਸਪੇਸ ਹੈ।
ਨੋਟਸ
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
- MIT Linear Algebra Lecture on Independence, Basis, and Dimension by Gilbert Strang at MIT OpenCourseWare