ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ

testwiki ਤੋਂ
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ

{{#invoke:Sidebar |collapsible | bodyclass = plainlist | titlestyle = padding-bottom:0.3em;border-bottom:1px solid #aaa; | title = ਥਰਮੋਡਾਇਨਾਮਿਕਸ | imagestyle = display:block;margin:0.3em 0 0.4em; | image = | caption = ਕਲਾਸੀਕਲ ਕਾਰਨੌਟ ਹੀਟ ਇੰਜਨ | listtitlestyle = background:#ddf;text-align:center; | expanded = ਨਿਯਮ

| list1name = ਸ਼ਾਖਾਵਾਂ | list1title = ਸ਼ਾਖਾਵਾੰ | list1 = ਫਰਮਾ:Startflatlist

ਫਰਮਾ:Endflatlist

| list2name = ਨਿਯਮ | list2title = ਨਿਯਮ | list2 = ਫਰਮਾ:Startflatlist

ਫਰਮਾ:Endflatlist

| list3name = ਸਿਸਟਮ | list3title = ਸਿਸਟਮ | list3 =

ਫਰਮਾ:Sidebar

| list4name = sysprop | list4title = ਸਿਸਟਮ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ

| list4 =

Note: ਕੰਜੂਗੇਟ ਅਸਥਿਰਾਂਕ in italics
ਫਰਮਾ:Sidebar

| list5name = ਪਦਾਰਥ | list5title = ਪਦਾਰਥਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ | list5 =

ਫਰਮਾ:Material properties equations (thermodynamics)

| list6name = ਇਕੁਏਸ਼ਨਾਂ | list6title = ਇਕੁਏਸ਼ਨਾਂ | list6 = ਫਰਮਾ:Startflatlist

ਫਰਮਾ:Endflatlist

| list7name = ਪੁਟੈਂਸ਼ਲਾਂ | list7title = ਪੁਟੈਂਸ਼ਲਾਂ | list7 = ਫਰਮਾ:Startflatlist

ਫਰਮਾ:Endflatlist ਫਰਮਾ:Unbulleted list

| list8name = hist/cult | list8title = ਫਰਮਾ:Hlist | list8 =

ਫਰਮਾ:Sidebar

| list9name = ਵਿਗਿਆਨੀ | list9title = ਵਿਗਿਆਨੀ | list9 = ਫਰਮਾ:Startflatlist

ਫਰਮਾ:Endflatlist

| below = Book:Thermodynamics

}}

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਆਇਸੋਲੇਟਡ ਸਿਸਟਮ ਦੀ ਕੁੱਲ ਐਨਟ੍ਰੌਪੀ ਵਕਤ ਪਾ ਕੇ ਸਿਰਫ ਵੱਧ ਸਕਦੀ ਹੈ ਜਾਂ ਅਜਿਹੇ ਆਦਰਸ਼ ਮਾਮਲਿਆਂ ਅੰਦਰ ਸਥਿਰ ਰਹਿ ਸਕਦੀ ਹੈ ਜਿੱਥੇ ਸਿਸਟਮ ਕਿਸੇ ਇੱਕਸਾਰ ਅਵਸਥਾ (ਸੰਤੁਲਨ) ਵਿੱਚ ਹੋਵੇ ਜਾਂ ਕਿਸੇ ਰਿਵਰਸੀਬਲ ਪ੍ਰੋਸੈੱਸ ਅਧੀਨ ਹੋਵੇ । ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਹੋ ਰਿਹਾ ਵਾਧਾ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ, ਅਤੇ ਭਵਿੱਖ ਅਤੇ ਭੂਤਕਾਲ ਦਰਮਿਆਨ ਅਸਮਰੂਪਤਾ ਲਈ ਜਿੰਮੇਵਾਰ ਹੁੰਦੀ ਹੈ।


ਇਤਿਹਾਸਿਕ ਤੌਰ ਤੇ, ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਅਜਿਹੀ ਅਨੁਭਵ-ਸਿੱਧ ਖੋਜ ਸੀ ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕ ਥਿਊਰੀ ਦੇ ਇੱਕ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਤੇ ਤੌਰ ਤੇ ਸਵੀਕਾਰ ਕੀਤਾ ਗਿਆ ਸੀ। ਸਟੈਟਿਸਟੀਕਲ ਥਰਮੋਡਾਇਨਾਮਿਕਸ, ਕਲਾਸੀਕਲ ਜਾਂ ਕੁਆਂਟਮ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਨਿਯਮ ਦੀ ਸੂਖਮ ਜੜ੍ਹ ਦੀ ਵਿਆਖਿਆ ਸਮਝਾਉਂਦਾ ਹੈ।


ਦੂਜਾ ਨਿਯਮ ਕਈ ਤਰੀਕਿਆਂ ਵਿੱਚ ਦਰਸਾਇਆ ਗਿਆ ਹੈ। ਇਸਦੀ ਪਹਿਲੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦਾ ਕ੍ਰੈਡਿਟ (ਸ਼੍ਰੇਅ) ਫ੍ਰੈਂਚ ਵਿਗਿਆਨਿਕ ਸਾਦੀ ਕਾਰਨੌਟ ਨੂੰ 1824 ਵਿੱਚ ਜਾਂਦਾ ਹੈ, ਜਿਸਨੇ ਸਾਬਤ ਕੀਤਾ ਕਿ ਕਿਸੇ ਹੀਟ ਇੰਜਣ ਅੰਦਰ ਕੰਮ ਕਰਨ ਪ੍ਰਤਿ ਹੀਟ ਦੇ ਰੂਪਾਂਤ੍ਰਨ ਦੀ ਕੁਸ਼ਲਤਾ ਦੀ ਇੱਕ ਉੱਚਤਮ ਸੀਮਾ ਹੁੰਦੀ ਹੈ।

ਜਾਣ-ਪਛਾਣ

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਸਾਰਿਆਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸਿਸਟਮਾਂ ਨਾਲ ਸਬੰਧਤ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦੇ ਮੁੱਢਲੀ ਪਰਿਭਾਸ਼ਾ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦਾ ਹੈ, ਅਤੇ ਊਰਜਾ ਦੀ ਸੁਰੱਖਿਅਤਾ ਦਾ ਨਿਯਮ ਬਿਆਨ ਕਰਦਾ ਹੈ।[1][2] ਦੂਜਾ ਨਿਯਮ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੀ ਦਿਸ਼ਾ ਨਾਲ ਸਬੰਧ ਰੱਖਦਾ ਹੈ[3] ਇਹ ਦਾਅਵਾ ਕਰਦਾ ਹੈ ਕਿ ਕੋਈ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆ ਸਿਰਫ ਇੱਕੋ ਸਮਝ ਵਿੱਚ ਚਲਦੀ ਹੈ, ਅਤੇ ਰਿਵਰਸੀਬਲ ਨਹੀਂ ਹੁੰਦੀ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਤਾਪ ਹਮੇਸ਼ਾਂ ਗਰਮ ਤੋਂ ਠੰਢੀਆਂ ਚੀਜ਼ਾਂ ਵੱਲ ਤੁਰੰਤ ਪ੍ਰਵਾਹ ਕਰਦਾ ਹੈ, ਅਤੇ ਕਦੇ ਵੀ ਉਲਟ ਨਹੀਂ ਚਲਦਾ, ਜਦੋਂ ਤੱਕ ਸਿਸਟਮ ਉੱਤੇ ਬਾਹਰੀ ਕੰਮ ਨਾ ਕੀਤਾ ਜਾਵੇ । ਇਸਦੀ ਅਜੋਕੀ ਪਰਿਭਾਸ਼ਾ ਐਨਟ੍ਰੌਪੀ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਹੈ।[4][5]

ਕਿਸੇ ਕਲਪਿਤ ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਅੰਦਰ, ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ (ਫਰਮਾ:Math) ਵਿੱਚ ਇੱਕ ਅਤਿਸੂਖਮ ਵਾਧਾ ਸਿਸਟਮ ਅਤੇ ਗਰਮੀ ਸਪਲਾਈ ਕਰਨ ਵਾਲੇ ਵਾਤਾਵਰਨ ਦੇ ਸਾਂਝੇ ਤਾਪਮਾਨ (ਫਰਮਾ:Math) ਦੁਆਰਾ ਵੰਡੀ ਹੋਈ ਕਿਸੇ ਕਲੋਜ਼ਡ ਸਿਸਟਮ ਦੀ ਗਰਮੀ (ਫਰਮਾ:Math) ਦੇ ਅਤਿਸੂਖਮ ਸੰਚਾਰ ਦੇ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ।:[6]

dS=δQT(closed system, idealized fictive reversible process).

ਗਰਮੀ (ਫਰਮਾ:Mvar) ਦੀਆਂ ਅਤਿਸੂਖਮ ਮਾਤਰਾਵਾਂ ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੀਆਂ ਅਤਿਸੂਖਮ ਮਾਤ੍ਰਾਵਾਂ (ਫਰਮਾ:Mvar) ਵਾਸਤੇ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਚਿੰਨ-ਧਾਰਨਾਵਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਐਨਟ੍ਰੌਪੀ ਅਵਸਥਾ ਦਾ ਫੰਕਸ਼ਨ ਹੁੰਦੀ ਹੈ, ਜਦੋਂਕਿ ਹੀਟ, ਕੰਮ (ਵਰਕ) ਵਾਂਗ ਇੰਝ ਨਹੀਂ ਹੁੰਦੀ । ਵਾਤਾਵਰਨ ਨਾਲ ਪਦਾਰਥ ਦਾ ਵਟਾਂਦ੍ਰਾ ਕਰੇ ਬਗੈਰ ਕਿਸੇ ਵਾਸਤਵਿਕ ਸੰਭਵ ਅਤਿਸੂਖਮ ਪ੍ਰਕ੍ਰਿਆ ਵਾਸਤੇ, ਦੂਜਾ ਨਿਯਮ ਮੰਗ ਕਰਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਵਾਧਾ ਹੇਠਾਂ ਲਿਖੇ ਨਾਲੋਂ ਜਿਆਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ:

dS>δQT(closed system, actually possible, irreversible process).

ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਮਾਮਲੇ ਲਈ ਇੱਕ ਸਰਵ ਸਧਾਰਨ ਪ੍ਰਕ੍ਰਿਆ ਵਿੱਚ ਸਿਸਟਮ ਉੱਤੇ ਉਸਦੇ ਵਾਤਾਵਰਨ ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਰਿਹਾ ਕੰਮ ਸ਼ਾਮਿਲ ਹੋ ਸਕਦਾ ਹੈ, ਜੋ ਜਰੂਰ ਹੀ ਸਿਸਟਮ ਦੇ ਅੰਦਰ ਰਗੜ ਜਾਂ ਵਿਸਕਸ ਪ੍ਰਭਾਵ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਅਤੇ ਕਿਉਂਕਿ ਹੀਟ ਟ੍ਰਾਂਸਫਰ ਦਰਅਸਲ ਸਿਰਫ ਗੈਰ-ਪਲਟਣਯੋਗ ਤੌਰ ਤੇ ਹੀ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਦੇ ਫਰਕ ਰਾਹੀਂ ਪ੍ਰੇਰਿਤ ਹੁੰਦੀ ਹੈ।[7][8]

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਜ਼ੀਰੋਵਾਂ ਨਿਯਮ ਅਪਣੇ ਆਮ ਸੰਖੇਪ ਕਥਨ ਵਿੱਚ ਇਸ ਪਛਾਣ ਦੀ ਪ੍ਰਵਾਨਗੀ ਦਿੰਦਾ ਹੈ ਕਿ ਥਰਮਲ-ਸੰਤੁਲਨ ਦੇ ਕਿਸੇ ਸਬੰਧ ਅੰਦਰ ਦੋ ਵਸਤੂਆਂ ਇੱਕੋ ਜਿਹਾ ਤਾਪਮਾਨ ਰੱਖਦੀਆਂ ਹਨ, ਖਾਸ ਕਰਕੇ ਕੋਈ ਟੈਸਟ ਅਧੀਨ ਵਸਤੂ ਕਿਸੇ ਇਸ਼ਾਰੀਆ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੇ ਤੌਰ ਤੇ ਇੱਕੋ ਜਿਹਾ ਤਾਪਮਾਨ ਰੱਖਦੀ ਹੈ।[9] ਕਿਸੇ ਦੂਜੀ ਵਸਤੂ ਨਾਲ ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰ ਕਿਸੇ ਵਸਤੂ ਵਾਸਤੇ, ਅਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਕਈ ਅਨੁਭਵ-ਸਿੱਧ ਤਾਪਮਾਨ ਪੈਮਾਨੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਆਮ ਤੌਰ ਤੇ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਇਸ਼ਾਰੀਆ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਹਨ। ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਵੱਖਰੀ ਕੀਤੀ ਗਈ ਤਾਪਮਾਨ ਸਕੇਲ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਇੱਕ ਸ਼ੁੱਧ (ਐਬਸਲਿਊਟ) ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਵਿਸ਼ੇਸ਼ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ।[10][11]

ਨਿਯਮ ਦੇ ਵਿਭਿੰਨ ਕਥਨ

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਕਈ ਖਾਸ ਤਰੀਕਿਆਂ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ,[12] ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਜਿਆਦਾ ਮੁੱਖ ਕਲਾਸੀਕਲ ਕਥਨਫਰਮਾ:Sfnp ਇਹ ਹਨ; ਰਡਲਫ ਕਲੀਓਸੀਅਸ (1854) ਦੁਆਰਾ ਕਥਨ, ਲੌਰਡ ਕੈਲਵਿਨ (1851) ਦੁਆਰਾ ਕਥਨ, ਅਤੇ ਕੰਸਟੈਂਟਿਨ ਕੈਰਾਥੀਓਡੋਰੀ (1909) ਦੁਆਰਾ ਸਵੈ-ਸਿੱਧਾਤਮਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕ ਅੰਦਰ ਕਥਨ । ਇਹ ਕਥਨ ਕੁੱਝ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੀ ਅਸੰਭਵਤਾ ਦਾ ਹਵਾਲਾ ਦਿੰਦੇ ਹੋਏ ਆਮ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਅੰਦਰ ਨਿਯਮ ਦਰਸਾਉਂਦੇ ਹਨ। ਕਲਾਓਸੀਅਸ ਅਤੇ ਕੈਲਵਿਨ ਕਥਨ ਇੱਕਸਮਾਨ ਹੁੰਦੇ ਸਾਬਤ ਕੀਤੇ ਗਏ ਹਨ।ਫਰਮਾ:Sfnp

ਕਾਰਨੌਟ ਦਾ ਸਿਧਾਂਤ

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਇਤਿਹਾਸਿਕ ਜੜ ਕਾਰਨੌਟ ਦੇ ਸਿਧਾਂਤ ਵਿੱਚ ਸੀ। ਇਹ ਕਿਸੇ ਕਾਰਨੌਟ ਹੀਟ ਇੰਜਣ ਦੇ ਇੱਕ ਚੱਕਰ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਜੋ ਕਲਪਨਿਕ ਤੌਰ ਤੇ ਕੁਆਸੀ-ਸਟੈਟਿਕ ਦੇ ਤੌਰ ਤੇ ਜਾਣੇ ਜਾਂਦੇ ਅੱਤ ਧੀਮੇਪਣ ਦੇ ਹੱਦਾਤਮਿਕ ਮੋਡ ਵਿੱਚ ਇਸਲਈ ਓਪਰੇਟ ਕਰਦਾ ਹੈ, ਤਾਂ ਜੋ ਗਰਮੀ ਅਤੇ ਕੰਮ ਵਟਾਂਦਰੇ ਅਜਿਹੇ ਉੱਪ-ਸਿਸਟਮਾਂ ਦਰਮਿਆਨ ਹੀ ਹੋਣ ਜੋ ਹਮੇਸ਼ਾਂ ਹੀ ਅਪਣੀਆਂ ਖੁਦ ਦੀਆਂ ਅੰਦਰੂਨੀ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਕਾਰਨੌਟ ਇੱਜਣ ਉਹਨਾਂ ਇੰਜਨੀਅਰਾਂ ਦੀ ਵਿਸ਼ੇਸ਼ ਦਿਲਚਸਪੀ ਦਾ ਇੱਕ ਆਦਰਸ਼ੱਧ ਕੀਤਾ ਹੋਇਆ ਯੰਤਰ ਰਿਹਾ ਹੈ ਜਿਹਨਾਂ ਦਾ ਵਾਹ ਹੀਟ ਇੰਜਣਾਂ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਨਾਲ ਪੈਂਦਾ ਹੈ। ਕਾਰਨੌਟ ਦਾ ਸਿਧਾਂਤ ਕਾਰਨੌਟ ਰਾਹੀਂ ਉਸ ਵੇਲੇ ਪਛਾਣਿਆ ਗਿਆ ਸੀ ਜਦੋਂ ਹੀਟ ਬਾਬਤ ਕੇਲੌਰਿਕ ਥਿਊਰੀ ਗੰਭੀਰਤਾ ਨਾਲ ਵਿਚਾਰੀ ਗਈ ਸੀ, ਜਿਸਤੋਂ ਬਾਦ ਵਿੱਚ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਪਛਾਣਿਆ ਗਿਆ ਸੀ, ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੇ ਸੰਕਲਪ ਦੀ ਗਣਿਤਿਕ ਲਿਖਾਵਟ ਵੀ ਬਾਦ ਵਿੱਚ ਬਣੀ ਸੀ। ਪਹਿਲੇ ਨਿਯਮ ਦੀ ਰੋਸ਼ਨੀ ਵਿੱਚ ਵਿਆਖਿਅਤ ਕਿਤਾ ਜਾਣ ਤੇ, ਇਹ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੇ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਬਰਾਬਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਅੱਜ ਤੱਕ ਲਾਗੂ ਰਿਹਾ ਹੈ। ਇਹ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ;

ਕਿਸੇ ਅਰਧ-ਸਥਿਰ ਜਾਂ ਪਲਟਣਯੋਗ ਕਾਰਨੌਟ ਚੱਕਰ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸਿਰਫ ਦੋ ਹੀਟ ਰਿਜ਼੍ਰਵ੍ਰਾਂ ਦੇ ਤਾਪਮਾਨ ਤੇ ਹੀ ਨਿਰਭਰ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇੱਕੋ ਜਿਹੀ ਹੁੰਦੀ ਹੈ, ਚਾਹੇ ਕੰਮ ਕਰਨ ਵਾਲਾ ਪਦਾਰਥ ਕੁੱਝ ਵੀ ਹੋਵੇ । ਇਸ ਤਰੀਕੇ ਵਿੱਚ ਕ੍ਰਿਆਸ਼ੀਲ ਕੀਤਾ ਗਿਆ ਕੋਈ ਕਾਰਨੌਟ ਇੰਜਣ ਉਹਨਾਂ ਦੋਵੇਂ ਤਾਪਮਾਨਾਂ ਨੂੰ ਵਰਤਦੇ ਹੋਏ ਸਭ ਤੋਂ ਜਿਆਦਾ ਸੰਭਵ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਰੱਖਣ ਵਾਲਾ ਹੁੰਦਾ ਹੈ।[13][14][15][16][17][18][19]

ਕਲਾਓਸੀਅਸ ਕਥਨ

ਜਰਮਨ ਵਿਗਿਆਨਿਕ ਰਡਲਫ ਕਲਾਓਸੀਅਸ ਨੇ ਗਰਮੀ ਟ੍ਰਾਂਸਫਰ ਅਤੇ ਕੰਮ ਦਰਮਿਆਨ ਸਬੰਧ ਜਾਂਚ ਕੇ 1850 ਵਿੱਚ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜਾ ਨਿਯਮ ਲਈ ਬੁਨਿਆਦ ਦੀ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ।ਫਰਮਾ:Sfnp ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਸਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ, ਜੋ ਜਰਮਨੀ ਵਿੱਚ 1854 ਵਿੱਚ ਛਾਪੀ ਗਈ ਸੀ, ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਜਾਣੀ ਜਾਂਦੀ ਹੈ:

ਗਰਮੀ ਕਿਸੇ ਠੰਡੀ ਤੋਂ ਗਰਮ ਵਸਤੂ ਵੱਲ ਕੁੱਝ ਹੋਰ ਅਜਿਹੀ ਤਬਦੀਲੀ ਕਰੇ ਬਗੈਰ ਨਹੀਂ ਜਾ ਸਕਦੀ ਜੋ ਉਹਨਾਂ ਨਾਲ ਜੁੜੀ ਹੋਵੇ ਅਤੇ ਉਸੇ ਵਕਤ ਹੋਵੇ।{sfnp|Clausius|1854|p=86}}

ਕਲਾਓਸੀਅਸ ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਕਥਨ ਹੀਟ ਦੇ ਲਾਂਘੇ ਦੀ ਧਾਰਨਾ ਵਰਤਦਾ ਹੈ। ਜਿਵੇਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਚਰਚਾਵਾਂ ਵਿੱਚ ਆਮ ਹੁੰਦਾ ਹੈ, ਇਸਦਾ ਅਰਥ ਐਨਰਜੀ ਅਤੇ ਹੀਟ ਦਾ ਸ਼ੁੱਧ ਸੰਚਾਰ ਹੋਇਆ, ਜੋ ਇੱਕ ਰਸਤੇ ਅਤੇ ਦੂਜੇ ਰਸਤੇ ਤੋਂ ਯੋਗਦਾਨਾਤਮਿਕ ਸੰਚਾਰ ਵੱਲ ਇਸ਼ਾਰਾ ਨਹੀਂ ਕਰਦਾ ।

ਹੀਟ (ਗਰਮੀ) ਠੰਡੇ ਖੇਤਰਾਂ ਤੋਂ ਗਰਮ ਖੇਤਰਾਂ ਵੱਲ ਸਿਸਟਮ ਉੱਤੇ ਬਾਹਰੀ ਤੌਰ ਤੇ ਕੰਮ ਕੀਤੇ ਬਗੈਰ ਨਹੀਂ ਵਹਿ ਸਕਦੀ, ਜੋ ਰੈਫਰਿਜ੍ਰੇਸ਼ਨ ਦੇ ਸਧਾਰਨ ਅਨੁਭਵ ਤੋਂ ਸਪੱਸ਼ਟ ਸਾਬਤ ਹੁੰਦਾ ਹੈ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਗਰਮੀ ਠੰਢ ਤੋਂ ਗਰਮੀ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ, ਪਰ ਸਿਰਫ ਉਦੋਂ ਜਦੋਂ ਰੈਫ੍ਰਿਜ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਵਰਗਾ ਕੋਈ ਬਾਹਰੀ ਕਾਰਕ (ਏਜੰਟ) ਅਜਿਹਾ ਕਰਨ ਲਈ ਫੋਰਸ ਲਗਾਵੇ ।

ਕੈਲਵਿਨ ਕਥਨ

ਲੌਰਡ ਕੈਲਵਿਨ ਨੇ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਇਸਤਰਾਂ ਲਿਖਿਆ ਹੈ; ਨਿਰਜੀਵ ਪਦਾਰਥਕ ਕਾਰਕ (ਏਜੰਸੀ) ਦੇ ਅਰਥਾਂ ਦੁਆਰਾ, ਵਾਤਾਵਰਨ ਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਤਾਪਮਾਨ ਤੋਂ ਥੱਲੇ ਠੰਢਾ ਕਰਕੇ ਪਦਾਰਥ ਦੇ ਕਿਸੇ ਵੀ ਹਿੱਸੇ (ਪੋਰਸ਼ਨ) ਤੋਂ ਮਕੈਨੀਕਲ ਪ੍ਰਭਾਵ ਬਣਾਉਣਾ ਅਸੰਭਵ ਹੈ।ਫਰਮਾ:Sfnp

ਕਲਾਓਸੀਅਸ ਅਤੇ ਕੈਲਵਿਨ ਕਥਨਾਂ ਦੀ ਸਮਾਨਤਾ

ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਤੋਂ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਵਿਓਂਤਬੰਦੀ

ਮੰਨ ਲਓ ਕੈਲਵਿਨ ਦੀ ਸਟੇਟਮੈਂਟ ਨੂੰ ਉਲੰਘਣਾ ਕਰਨ ਵਾਲਾ ਕੋਈ ਇੰਜਣ ਹੈ: ਯਾਨਿ ਕਿ, ਜੋ ਹੀਟ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੋਵੇ ਅਤੇ ਇਸਨੂੰ ਹੋਰ ਨਤੀਜੇ ਬਗੈਰ ਇੱਕ ਚੱਕਰਾਕਾਰ ਅੰਦਾਜ਼ ਵਿੱਚ ਪੂਰੀ ਤਰਾਂ ਕੰਮ ਵਿੱਚ ਤਬਦੀਲ ਕਰਦਾ ਹੋਵੇ । ਹੁਣ ਇਸਦਾ ਤਸਵੀਰ ਵਿੱਚ ਦੱਸੇ ਮੁਤਾਬਿਕ ਇੱਕ ਉਲਟੇ ਕਾਰਨੌਟ ਇੰਜਣ ਨਾਲ ਮੇਲ ਕਰੋ (ਪੇਅਰ ਬਣਾਓ)। ਦੋ ਇੰਜਣਾਂ ਨਾਲ ਇਸ ਨਵੀਨ ਬਣਾਏ ਗਏ ਇੰਜਣ ਦਾ ਸ਼ੁੱਧ ਅਤੇ ਨਿਰੋਲ ਅਸਰ ਠੰਢੇ ਸੁਰੱਖਿਅਕ ਤੋਂ ਗਰਮ ਵੱਲ ਹੀਟ ΔQ=Q(1η1) ਟ੍ਰਾਂਸਫਰ ਕਰਦਾ ਹੈ, ਜੋ ਕਲਾਓਸੀਅਸ ਦੀ ਸਟੇਟਮੈਂਟ ਦੀ ਉਲੰਘਣਾ ਹੈ। ਇਸਤਰਾਂ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਦੀ ਇੱਕ ਉਲੰਘਣਾ ਤੋਂ ਭਾਵ ਹੈ ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਦੀ ਵੀ ਉਲੰਘਣਾ, ਯਾਨਿ ਕਿ, ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਤੋਂ ਭਾਵ ਹੈ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ । ਇੱਕ ਮਿਲਦੇ ਜੁਲਦੇ ਅੰਦਾਜ ਵਿੱਚ ਹੀ ਅਸੀਂ ਸਾਬਤ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਤੋਂ ਭਾਵ ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸ ਕਾਰਨ ਦੋਵੇਂ ਇੱਕ ਸਮਾਨ ਹੁੰਦੀਆਂ ਹਨ।

ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨ

ਪਲੈਂਕ ਨੇ ਅਨੁਭਵ ਤੋਂ ਸਿੱਧੇ ਤੌਰ ਤੇ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਅੱਗੇ ਲਿਖਿਆ ਕਥਨ ਪੇਸ਼ ਕੀਤਾ । ਇਹ ਕਦੇ ਕਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਸਦੀ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਵੀ ਪੁਕਾਰੀ ਜਾਂਦੀ ਹੈ, ਪਰ ਉਸਨੇ ਇਸ ਵੱਲ ਦੂਜੇ ਨਿਯਮ ਦੀ ਵਿਓਂਤਬੰਦੀ ਵਾਸਤੇ ਇੱਕ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਦੇ ਤੌਰ ਤੇ ਇਸ਼ਾਰਾ ਕੀਤਾ ।

ਇੱਕ ਅਜਿਹਾ ਇੰਜਣ ਬਣਾਉਣਾ ਅਸੰਭਵ ਹੈ ਜੋ ਕਿਸੇ ਪੂਰੇ ਚੱਕਰ ਅੰਦਰ ਕੰਮ ਕਰੇਗਾ, ਅਤੇ ਕਿਸੇ ਹੀਟ ਰਿਜ਼੍ਰਵੋਇਰ (ਤਾਪ ਸੁਰੱਖਿਅਕ) ਦੇ ਠੰਢੇਪਣ ਅਤੇ ਵਜ਼ਨ (ਭਾਰ/ਵੇਟ) ਨੂੰ ਵਧਾਉਣ ਤੋਂ ਇਲਾਵਾ ਕੋਈ ਅਸਰ ਨਹੀਂ ਪੈਦਾ ਕਰੇਗਾ।[20][21]

ਕੈਲਵਿਨ ਦੇ ਕਥਨ ਅਤੇ ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨ ਦਰਮਿਆਨ ਸਬੰਧ

ਟੈਕਸਟਬੁਕਾਂ ਅੰਦਰ ਇਹ ਲੱਗਪਗ ਇਸ ਨੂੰ ਨਿਯਮ ਦੀ ’’ਕੈਲਵਿਨ-ਪਲੈਂਕ ਸਟੇਟਮੈਂਟ’’ ਬਾਰੇ ਕਹਿਣ ਦਾ ਰਿਵਾਜ਼ ਹੀ ਹੋ ਗਿਆ ਹੈ, ਜਿਵੇਂ ਤੇਰ ਹਾਰ ਅਤੇ ਵਰਜੀਲੈਂਡ ਦੀਆਂ ਪੁਸਤਕਾਂ ਅੰਦਰ ਉਦਾਹਰਨਾਂ ਲਈ ਹੈ।[22] ਇੱਕ ਪੁਸਤਕ ਪਲੈਂਕ ਦੇ ਕਥਨ ਵਰਗੀ ਕੋਈ ਸਟੇਟਮੈਂਟ ਦਿੰਦੀ ਹੈ, ਪਰ ਪਲੈਂਕ ਦਾ ਨਾਮ ਲਏ ਬਗੈਰ ਕੈਲਵਿਨ ਨੂੰ ਇਸਦਾ ਸ਼੍ਰੇਅ ਦਿੰਦੀ ਹੈ।[23] ਇੱਕ ਮੋਨੋਗ੍ਰਾਫ ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨ ਨੂੰ ਕੈਲਵਿਨ-ਪਲੈਂਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਤੌਰ ਤੇ ਬਿਆਨ ਕਰਦਾ ਹੈ, ਜਿਸਦਾ ਲੇਖਕ ਕੈਲਵਿਨ ਲਿਖਿਆ ਗਿਆ ਹੈ, ਬੇਸ਼ੱਕ ਇਹ ਸਹੀ ਤੌਰ ਤੇ ਪਲੈਂਕ ਨੂੰ ਅਪਣੇ ਹਵਾਲਿਆਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਦੀ ਹੈ।[24] ਪਾਠਕ ਇੱਥੇ ਉੱਪਰ ਲਿਖੀਆਂ ਦੋ ਸਟੇਟਮੈਂਟਾਂ ਦੀ ਤੁਲਨਾ ਕਰ ਸਕਦੇ ਹਨ।

ਪਲੈਂਕ ਦਾ ਬਿਆਨ

ਪਲੈਂਕ ਨੇ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਇਸਤਰਾਂ ਬਿਆਨ ਕੀਤਾ ਹੈ।

ਕੁਦਰਤ ਵਿੱਚ ਵਾਪਰਨ ਵਾਲੀ ਹਰੇਕ ਪ੍ਰਕ੍ਰਿਆ ਅਜਿਹੀ ਸੈਂਸ (ਸਮਝ) ਅੰਦਰ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਪ੍ਰਕ੍ਰਿਆ ਵਿੱਚ ਭਾਗ ਲੈਣ ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਚੀਜ਼ਾਂ ਦੀਆਂ ਐਨਟ੍ਰੌਪੀਆਂ ਦਾ ਜੋੜ ਵਧ ਜਾਂਦਾ ਹੈ। ਸੀਮਾ ਅੰਦਰ, ਯਾਨਿ ਕਿ, ਪਲਟਾਓਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਵਾਸਤੇ, ਐਨਟ੍ਰੌਪੀਆਂ ਦਾ ਜੋੜ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦਾ ।[25][26][27]

ਸਗੋਂ ਪਲੈਂਕ ਦੀ ਸਟੇਟਮੈਂਟ ਵਰਗੀ ਉਹਲਨਬੈਕ ਦੀ ਵੀ ਸਟੇਟਮੈਂਟ ਹੈ ਅਤੇ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਵਰਤਾਰਿਆਂ ਵਾਸਤੇ ਫੋਰਡ ਦੀ ਵੀ ।

... ਇੱਕ ਸੰਤੁਲਨ ਅਵਸਥਾ ਤੋਂ ਦੂਜੀ ਤੱਕ (ਜਿਵੇਂ ਕੋਲ ਕੋਲ ਲਿਆਉਣ ਤੇ A ਅਤੇ B ਦੋ ਚੀਜ਼ਾਂ ਦੇ ਤਾਪਮਾਨ ਦੇ ਸਮਾਨੀਕਰਨ ਦੀ ਉਦਾਹਰਨ ਵਾਸਤੇ) ਇੱਕ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਜਾਂ ਤਤਕਾਲ ਤਬਦੀਲੀ ਅੰਦਰ ਐਨਟ੍ਰੌਪੀ ਹਮੇਸ਼ਾਂ ਵਧਦੀ ਜਾਂਦੀ ਹੈ।[28]

ਕੈਰਾਥੀਓਡੋਰੀ ਦਾ ਸਿਧਾਂਤ

ਕੈਰਾਥੀਓਡੋਰੀ ਦਾ ਸਿਧਾਂਤ ਇੱਥੇ ਰੀਡਾਇਰੈਕਟ ਹੁੰਦਾ ਹੈ

ਕੰਸਟੈਂਟਿਨ ਕੈਰਾਥਿਓਡੋਰੀ ਨੇ ਇੱਕ ਸ਼ੁੱਧ ਗਣਿਤਿਕ ਸਵੈ-ਸਿੱਧਾਂਤਿਕ ਬੁਨਿਆਦਾ ਉੱਤੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਕੀਤੀ । ਦੂਜੇ ਨਿਤਮ ਬਾਬਤ ਉਸਦੀ ਸਟੇਟਮੈਂਟ ਨੂੰ ਕੈਰਾਥਿਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਇਸਤਰਾਂ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:[29]

ਕਿਸੇ ਏਡੀਆਬੈਟਿਕ ਤੌਰ ਤੇ ਬੰਦ ਸਿਸਟਮ ਦੇ ਕਿਸੇ ਅਵਸਥਾ S ਦੇ ਹਰੇਕ ਗਵਾਂਢ ਅੰਦਰ S ਤੋਂ ਅਪਹੁੰਚ-ਯੋਗ ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ।[30]

ਇਸ ਜਾਣਕਾਰੀ ਨਾਲ, ਉਸਨੇ ਏਡੀਆਬੈਟਿਕ ਪਹੁੰਚਯੋਗਤਾ ਦੇ ਸੰਕਲਪ (ਧਾਰਨਾ) ਨੂੰ ਪਹਿਲੀ ਵਾਰ ਦਰਸਾਇਆ ਅਤੇ ਰੇਖਾਗਣਿਤਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਕਹੇ ਜਾਂਦੇ ਕਲਾਸੀਕਲ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਇੱਕ ਨਵੀਨ ਉੱਪ-ਖੇਤਰ ਵਾਸਤੇ ਬੁਨਿਆਦਾ ਮੁਹੱਈਆ ਕਰਵਾਈ । ਕੈਰਾਥੀਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਐਨਰਜੀ ਦੀ ਮਾਤਰਾ ਦਾ ਕੁਆਸੀ-ਸਟੈਟਿਸਟੀਕਲ ਤੌਰ ਤੇ ਹੀਟ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੋਣਾ ਇੱਕ ਹੋਲੋਨੋਮਿਕ (ਸੰਪੂਰਣ) ਪ੍ਰੋਸੈੱਸ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, δQ=TdS [31] ਫਰਮਾ:Clarify ਬੇਸ਼ੱਕ ਟੈਕਸਟਬੁਕਾਂ ਅੰਦਰ ਇਹ ਕਹਿਣਾ ਲੱਗਪਗ ਰਿਵਾਜ਼ ਬਣ ਗਿਆ ਹੈ ਕਿ ਕੈਰਾਥਿਓਡੋਰੀ ਦਾ ਸਿਧਾਂਤ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਇਸਨੂੰ ਕਲਾਓਸੀਅਸ ਜਾਂ ਕੈਲਵਿਨ-ਪਲੈਂਕ ਕਥਨਾਂ ਸਮਾਨ ਵਿਚਾਰਨਾ, ਵਾਸਤਵ ਵਿੱਚ ਇੰਝ ਨਹੀਂ ਹੈ। ਦੂਜੇ ਨਿਯਮ ਦੀ ਸਾਰੀ ਸਮੱਗਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਕੈਰਾਥਿਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਪਲੈਂਕ ਦੇ ਸਿਧਾਂਤ ਰਾਹੀਂ ਪੂਰਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ, ਕਿ ਕਿਸੇ ਅਜਿਹੇ ਬੰਦ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਆਇਸੋਕੋਰਿਕ ਕੰਮ ਹਮੇਸ਼ਾਂ ਹੀ ਵਧਾ ਦਿੰਦਾ ਹੈ ਜੋ ਸ਼ੁਰੂਆਤ ਵਿੱਚ ਅਪਣੇ ਅੰਦਰੂਨੀ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।[8]ਫਰਮਾ:Sfnp[32][33] ਫਰਮਾ:Clarify

ਪਲੈਂਕ ਦਾ ਸਿਧਾਂਤ

1926 ਵਿੱਚ, ਮੈਕਸ ਪਲੈਂਕ ਨੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਅਧਾਰ ਤੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪਰਚਾ ਲਿਖਿਆ ।[32][34] ਉਸਨੇ ਇਸ ਸਿਧਾਂਤ ਵੱਲ ਇਸ਼ਾਰਾ ਕੀਤਾ

ਓਸ ਅਰਸੇ ਦੌਰਾਨ, ਕਿਸੇ ਬੰਦ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਕਿਸੇ ਏਡੀਆਬੈਟਿਕ ਪ੍ਰਕ੍ਰਿਆ ਰਾਹੀਂ ਵਧ ਜਾਂਦੀ ਹੈ, ਜਿਸ ਵਿੱਚ ਸਿਸਟਮ ਦਾ ਵੌਲੀਊਮ ਸਥਿਰ ਰਹੇ।[8]ਫਰਮਾ:Sfnp

ਇਹ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਹੀਟ ਬਾਰੇ ਨਹੀਂ ਦੱਸਦੀ ਅਤੇ ਤਾਪਮਾਨ ਦਾ ਨਾਮ ਵੀ ਨਹੀਂ ਲੈਂਦੀ, ਨਾ ਹੀ ਐਨਟ੍ਰੌਪੀ ਦਾ ਹੀ ਜਿਕਰ ਕਰਦੀ ਹੈ, ਅਤੇ ਨਾ ਹੀ ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ ਇਹ ਅੱਖਾ ਮਿਚ ਕੇ ਉਹਨਾਂ ਧਾਰਨਾਵਾਂ ਉੱਤੇ ਭਰੋਸਾ ਕਰਦੀ ਹੈ, ਪਰ ਇਹ ਦੂਜੇ ਨਿਯਮ ਦੀ ਸਮੱਗਰੀ ਤੋਂ ਭਾਵ ਰੱਖਦੀ ਹੈ। ਇੱਕ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਸਬੰਧਤ ਸਟੇਟਮੈਂਟ ਇਹ ਹੈ ਕਿ "ਰਗੜ ਬਲ ਪ੍ਰੈੱਸ਼ਰ ਕਦੇ ਵੀ ਪੌਜ਼ਟਿਵ ਕੰਮ ਨਹੀਂ ਕਰਦਾ।"[35] ਸ਼ਬਦਾ ਦਾ ਅਜਕੱਲ ਇੱਕ ਅਪ੍ਰਚਿੱਲਤ ਰੂਪ ਵਰਤਦੇ ਹੋਏ, ਪਲੈਂਕ ਨੇ ਖੁਦ ਲਿਖਿਆ ਕਿ: "ਰਗੜ ਬਲ ਦੁਆਰਾ ਗਰਮੀ ਦੀ ਪੈਦਾਇਸ਼ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਹੈ।"[36][37]

ਐਨਟ੍ਰੌਪੀ ਦਾ ਜਿਕਰ ਨਾ ਕਰਦੇ ਹੋਏ, ਪਲੈਂਕ ਦਾ ਇਹ ਸਿਧਾਂਤ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਅੰਦਰ ਬਿਆਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਬਹੁਤ ਜਿਆਦਾ ਸਬੰਧ ਰੱਖਦਾ ਹੈ ਜੋ ਉੱਪਰ ਦਿੱਤੀ ਗਈ ਹੈ।[38] ਇਹ ਇਸਤਰਾਂ ਸਬੰਧਤ ਹੈ ਕਿ ਸਥਿਰ ਵੌਲੀਊਮ ਅਤੇ ਮੋਲ ਨੰਬਰਾਂ ਉੱਤੇ ਕਿਸੇ ਸਿਸਟਮ ਲਈ, ਐਨਟ੍ਰੌਪੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦਾ ਇੱਕ ਮੋਨੋਟੋਨਿਕ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ। ਹੋਰ ਤਾਂ ਹੋਰ, ਪਲੈਂਕ ਦਾ ਇਹ ਸਿਧਾਂਤ ਦਰਅਸਲ ਪਲੈਂਕ ਦੀ ਦੂਜੇ ਨਿਯਮ ਬਾਬਤ ਤਰਜੀਹੀ ਸਟੇਟਮੈਂਟ ਨਹੀਂ ਹੈ, ਜੋ ਇਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਵਰਤਮਾਨ ਸੈਕਸ਼ਨ ਦੇ ਪਿਛਲੇ-ਉਪ-ਭਾਗ ਵਿੱਚ ਉੱਪਰ ਲਿਖਿਆ ਗਿਆ ਹੈ, ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੀ ਧਾਰਨਾ ਉੱਤੇ ਟਿਕਿਆ ਹੈ।

ਇੱਕ ਬਿਆਨ ਜੋ ਕਿਸੇ ਸਮਝ ਅੰਦਰ ਪਲੈਂਕ ਦੇ ਸਿਧਾਂਤ ਪ੍ਰਤਿ ਪੂਰਕ (ਕੰਪਲੀਮੈਂਟਰੀ) ਹੈ ਬੋਰਗਨਾਕੇ ਅਤੇ ਸੋਨਟੈਗ ਦੁਆਰਾ ਬਣਾਇਆ ਗਿਆ ਹੈ। ਉਹ ਇਸਨੂੰ ਦੂਜੇ ਨਿਯਮ ਦੀ ਇੱਕ ਪੂਰੀ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਪੇਸ਼ ਨਹੀਂ ਕਰਦੇ:

... ਸਿਰਫ ਇੱਕੋ ਤਰੀਕਾ ਹੁੰਦਾ ਹੈ ਜਿਸ ਵਿੱਚ ਕਿਸੇ ਬੰਦ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਘਟਾਈ ਜਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਉਹ ਤਰੀਕਾ ਹੈ ਸਿਸਟਮ ਤੋਂ ਹੀਟ ਦਾ ਸੰਚਾਰ ਕਰਕੇ ।[39]

ਪਲੈਂਕ ਤੋਂ ਸਿਰਫ ਪੂਰਵ ਸਿਧਾਂਤ ਹੋਣ ਦੇ ਫਰਕ ਕਾਰਨ, ਇਹ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਦੇ ਨਿਯਮਾਂ ਅੰਦਰ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਹੁੰਦਾ ਹੈ। ਬੇਸ਼ੱਕ, ਕਿਸੇ ਸਿਸਟਮ ਤੋਂ ਪਦਾਰਥ ਦਾ ਹਟਾ ਲੈਣਾ ਇਸਦੀ ਐਨਟੌਪੀ ਵੀ ਘਟਾ ਸਕਦਾ ਹੈ।

ਕਿਸੇ ਅਜਿਹੇ ਸਿਸਟਮ ਵਾਸਤੇ ਕਥਨ ਜੋ ਅਪਣੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦੀ ਇੱਕ ਗਿਆਤ ਸਮੀਕਰਨ ਅਪਣੇ ਵਿਆਪਕ ਅਵਸਥਾ ਅਸਥਿਰਾਂਕਾਂ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਰੱਖਦਾ ਹੋਵੇ

ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਕਮਜੋਰ ਕਨਵੈਕਸ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੋਇਆ ਅੰਦਰੂਨੀ ਊਰਜਾ U ਦੇ ਸਮਾਨ ਵੀ ਸਾਬਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਦੋਂ ਵਿਆਪਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ (ਪੁੰਜ, ਵੌਲੀਊਮ, ਐਨਟ੍ਰੌਪੀ, ਆਦਿ) ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।[40][41] ਫਰਮਾ:Clarify

ਸੁਭਾਵਿਕ ਨਤੀਜੇ

ਦੂਜੀ ਕਿਸਮ ਦੀ ਨਿਰੰਤਰ ਗਤੀ

ਫਰਮਾ:Main article ਦੂਜੇ ਨਿਯਮ ਦੀ ਸਥਾਪਨਾ ਤੋਂ ਪਹਿਲਾਂ, ਕਈ ਲੋਕ ਜੋ ਇੱਕ ਨਿਰੰਤਰ ਗਤੀ ਮਸ਼ੀਨ ਇਜਾਦ ਕਰਨ ਵਿੱਚ ਦਿਲਚਸਪੀ ਰੱਖਦੇ ਸਨ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਪਹਿਲੇ ਨਿਯਮ ਦੀਆਂ ਪਾਬੰਧੀਆਂ ਦਾ ਕੋਈ ਰਸਤਾ ਲੱਭਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਚੁੱਕੇ ਸਨ, ਜਿਸ ਦੇ ਲਈ ਵਾਤਾਵਰਨ ਦੀ ਭਾਰੀ ਅੰਦਰੂਨੀ ਐਨਰਜੀ ਨੂੰ ਮਸ਼ੀਨ ਦੀ ਸ਼ਕਤੀ ਦੇ ਤੌਰ ਤੇ ਕੱਢਣਾ ਸੀ। ਅਜਿਹੀ ਕਿਸੇ ਮਸ਼ੀਨ ਨੂੰ ਇੱਕ "ਦੂਜੀ ਕਿਸਮ ਦੀ ਨਿਰੰਤਰ ਗਤੀ ਵਾਲੀ ਮਸ਼ੀਨ" ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਨਿਯਮ ਨੇ ਅਜਿਹੀਆਂ ਮਸ਼ੀਨਾਂ ਦੀ ਅਸੰਭਵਤਾ ਐਲਾਨੀ ।

ਕਾਰਨੌਟ ਥਿਊਰਮ

ਕਾਰਨੌਟ ਦੀ ਥਿਊਰਮ (1824) ਕਿਸੇ ਸੰਭਵ ਇੰਜਣ ਲਈ ਉੱਚਤਮ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ (ਐਫੀਸ਼ੈਂਸੀ) ਦੀ ਸੀਮਾ ਤੈਅ ਕਰਨ ਵਾਲਾ ਸਿਧਾਂਤ ਹੈ। ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਗਰਮ ਅਤੇ ਠੰਢੇ ਥਰਮਲ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਤਾਪਮਾਨ ਅੰਤਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕਾਰਨੌਟ ਥਿਊਰਮ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ:

  • ਦੋ ਹੀਟ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਸਾਰੇ ਨਾ-ਪਲਟਣਯੋਗ ਹੀਟ ਉਹਨਾਂ ਹੀ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕਿਸੇ ਕਾਰਨੌਟ ਇੰਜਣ ਤੋਂ ਘੱਟ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਵਾਲੇ ਹੁੰਦੇ ਹਨ।
  • ਦੋ ਹੀਟ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਸਾਰੇ ਪਲਟਣਯੋਗ ਹੀਟ ਇੰਜਣ ਓਹਨਾਂ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕਿਸੇ ਕਾਰਨੌਟ ਇੰਜਣ ਦੇ ਇੱਕ ਸਮਾਨ ਹੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਰੱਖਦੇ ਹਨ।

ਅਪਣੇ ਆਦਰਸ਼ ਮਾਡਲ ਅੰਦਰ, ਕੰਮ ਵਿੱਚ ਬਦਲੀ ਕੈਲੌਰਿਕ ਹੀਟ ਓਸ ਚੱਕਰ ਦੀ ਗਤੀ ਉਲਟਾ ਕੇ ਪੁਨਰ-ਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਧਾਰਨਾ ਨੂੰ ਨਤੀਜੇ ਵਜੋਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਰਿਵਰਸੀਬਿਲਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕਾਰਨੌਟ ਨੇ ਫੇਰ ਵੀ, ਹੋਰ ਅੱਗੇ, ਸਵੈ-ਸਿੱਧ ਕੀਤਾ ਕਿ ਕੁੱਝ ਕੈਲੌਰਿਕ ਗੁਆ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਮਕੈਨੀਕਲ ਕੰਮ ਵਿੱਚ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦੀ । ਇਸ ਲਈ, ਕੋਈ ਵੀ ਵਾਸਤਵਿਕ ਹੀਟ ਇੰਜਣ ਕਾਰਨੌਟ ਚੱਕਰ ਦੀ ਪਲਟਣਯੋਗਤਾ ਨਹੀਂ ਮਹਿਸੂਸ ਕਰ ਸਕਦਾ ਅਤੇ ਘੱਟ ਕਾਰਜ-ਕੁਸ਼ਲ ਹੋਣਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ।

ਭਾਵੇਂ ਐਨਟ੍ਰੌਪੀ ਦੀ ਜਗਹ ਕੈਲੌਰਿਕ (ਦੇਖੋ ਔਬਸੋਲੇਟ ਕੈਲੌਰਿਕ ਥਿਊਰੀ) ਦੇ ਨਿਯਮਾਂ ਵਿੱਚ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕੀਤੀ ਗਈ ਹੈ, ਫੇਰ ਵੀ ਇਹ ਦੂਜੇ ਨਿਯਮ ਵਿੱਚ ਇੱਕ ਸ਼ੂਰੂਆਤੀ ਸਮਝ ਸੀ।

ਕਲਾਓਸੀਅਸ ਅਸਮਾਨਤਾ

ਕਲਾਓਸੀਅਸ ਥਿਊਰਮ (1854) ਕਿਸੇ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆ ਅੰਦਰ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ

δQT0.

ਇਹ ਸਮਾਨਤਾ (ਬਰਾਬਰਤਾ) ਉਲਟਣਯੋਗ ਮਾਮਲੇ ਅੰਦਰ ਵੀ ਲਾਗੂ ਹੁੰਦੀ ਹੈ [42] ਅਤੇ '<' ਗੈਰ-ਉਲਟਣਯੋਗ ਮਾਮਲਾ ਹੈ। ਉਲਟਣਯੋਗ ਮਾਮਲਾ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਐਨਟ੍ਰੌਪੀ ਪੇਸ਼ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਕਿਸੇ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਦੀ ਵੇਰੀਏਸ਼ਨ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਅੰਦਰ ਅਵਸਥਾ ਫੰਕਸ਼ਨਲਟੀ ਤੋਂ 0 ਰਹਿੰਦੀਆਂ ਹਨ।

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਤਾਪਮਾਨ

ਫਰਮਾ:Main article ਕਿਸੇ ਮਨਮਰਜੀ ਦੇ ਹੀਟ ਇੰਜਣ ਲਈ, ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਇਹ ਹੁੰਦੀ ਹੈ:

η=WnqH=qHqCqH=1qCqH(1)

ਜਿੱਥੇ Wn ਪ੍ਰਤਿ ਚੱਕਰ ਕੀਤਾ ਗਿਆ ਸ਼ੁੱਧ ਕੰਮ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸਤਰਾਂ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸਿਰਫ qC/qH ਉੱਤੇ ਹੀ ਨਿਰਭਰ ਕਰਦੀ ਹੈ।

ਇਸਤਰਾਂ, ਤਾਪਮਾਨਾਂ T1 ਅਤੇ T2 ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕੋਈ ਵੀ ਪਲਟਣਯੋਗ ਹੀਟ ਇੰਜਣ ਜਰੂਰ ਹੀ ਇੱਕੋ ਜਿਹੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਵਾਲਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸਿਰਫ ਤਾਪਮਾਨਾਂ ਦਾ ਫੰਕਸ਼ਨ ਹੁੰਦੀ ਹੈ:

qCqH=f(TH,TC)(2)

ਇਸਦੇ ਨਾਲ ਹੀ, T1 ਅਤੇ T2 ਤਾਪਮਾਨਾਂ ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕੋਈ ਪਲਟਣਯੋਗ ਹੀਟ ਇੰਜਣ ਜਰੂਰ ਹੀ ਦੋ ਚੱਕਰਾਂ ਦੇ ਬਣੇ ਇੱਕ ਚੱਕਰ ਵਾਸਤੇ ਇੱਕੋ ਜੀੰਨੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ T1 ਅਤੇ ਇੱਕ ਹੋਰ (ਮੱਧ ਵਿਚਕਾਰਲਾ) ਤਾਪਮਾਨ T2 ਦਰਮਿਆਨ, ਅਤੇ ਦੂਜਾ T2 ਅਤੇ T3 ਦਰਮਿਆਨ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਮਾਮਲਾ ਸਿਰਫ ਤਾਂ ਹੀ ਹੋ ਸਕਦਾ ਹੈ ਜੇਕਰ

f(T1,T3)=q3q1=q2q3q1q2=f(T1,T2)f(T2,T3).

ਹੁਣ ਓਹ ਮਾਮਲਾ ਵਿਚਾਰੋ ਜਿੱਥੇ T1 ਇੱਕ ਫਿਕਸ ਇਸ਼ਾਰੀਆ ਤਾਪਮਾਨ ਹੋਵੇ: ਜੋ ਪਾਣੀ ਦੇ ਟ੍ਰਿਪਲ ਪੋਆਇੰਟ ਦਾ ਤਾਪਮਾਨ ਹੁੰਦਾ ਹੈ। ਫੇਰ ਕਿਸੇ ਵੀ T2 ਅਤੇ T3 ਲਈ,

f(T2,T3)=f(T1,T3)f(T1,T2)=273.16f(T1,T3)273.16f(T1,T2).

ਇਸਲਈ, ਜੇਕਰ ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਇਸ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਹੋਵੇ

T=273.16f(T1,T)

ਤਾਂ ਫੰਕਸ਼ਨ f, ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ, ਸਰਲ ਤੌਰ ਤੇ

f(T2,T3)=T3T2,

ਹੁੰਦਾ ਹੈ ਅਤੇ ਰੈਫ੍ਰੈਂਸ ਤਾਪਮਾਨ T1 ਦਾ ਮੁੱਲ 273.16 ਹੋਵੇਗਾ । (ਬੇਸ਼ੱਕ ਕੋਈ ਵੀ ਰੈਫ੍ਰੈਂਸ ਤਾਪਮਾਨ ਅਤੇ ਕੋਈ ਕੋਈ ਵੀ ਪੌਜਟਿਵ ਸੰਖਿਅਕ ਮੁੱਲ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਸੀ।– ਚੋਣ ਇੱਥੇ ਕੈਲਵਿਨ ਪੈਮਾਨੇ ਨਾਲ ਸਬੰਧਤ ਹੈ।)

ਐਨਟ੍ਰੌਪੀ

ਫਰਮਾ:Main article ਕਲਾਓਸੀਅਸ ਸਮਾਨਤਾ ਮੁਤਾਬਿਕ, ਕਿਸੇ ਰਿਵ੍ਰਸੀਬਲ ਪ੍ਰੋਸੈੱਸ ਲਈ

δQT=0

ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਲਾਈਨ ਇੰਟਗ੍ਰਲ LδQT ਰਸਤੇ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦਾ ਹੈ।

ਇਸਲਈ ਅਸੀਂ ਇੱਕ ਅਜਹੀ ਅਵਸਥਾ ਫੰਕਸ਼ਨ S ਕਹੀ ਜਾਣ ਵਾਲੀ ਐਨਟ੍ਰੌਪੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜੋ ਇਸ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੋਵੇ

dS=δQT

ਇਸਦੇ ਨਾਲ ਅਸੀਂ ਸਿਰਫ ਉੱਪਰਲੇ ਫਾਰਮੂਲੇ ਨੂੰ ਇੰਟੀਗ੍ਰੇਟ ਕਰਕੇ ਹੀ ਐਨਟ੍ਰੌਪੀ ਦਾ ਅੰਤਰ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ । ਸ਼ੁੱਧ ਮੁੱਲ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਸਾਨੂੰ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਤੀਜੇ ਨਿਯਮ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ, ਜੋ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਪਰਫੈਕਟ ਕ੍ਰਿਸਟਲਾਂ ਲਈ ਐਬਸੋਲਿਊਟ ਜ਼ੀਰੋ ਉੱਤੇ S=0 ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਗੈਰ-ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਲਈ, ਕਿਉਂਕਿ ਐਨਟ੍ਰੌਪੀ ਇੱਕ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਹੀ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਹਮੇਸ਼ਾਂ ਹੀ ਇੱਕ ਕਾਲਪਨਿਕ ਪਲਟਾਓਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਨਾਲ ਟਰਮੀਨਲ ਅਵਸਥਾਵਾਂ ਅਤੇ ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾਵਾਂ ਦਾ ਸੰਪਰਕ ਬਣਾ ਸਕਦੇ ਹਾਂ ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਅੰਦਰ ਅੰਤਰ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣ ਲਈ ਓਸ ਰਸਤੇ ਉੱਤੇ ਇੰਟੀਗ੍ਰੇਟ ਕਰ ਸਕਦੇ ਹਾਂ । ਹੁਣ ਉਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਨੂੰ ਉਲਟਾ ਕੇ ਕਹੀ ਗਈ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਪ੍ਰਕਿਆ ਨਾਲ ਮੇਲ ਦਿਓ । ਇਸ ਲੂਪ ਉੱਤੇ ਕਲਾਓਸੀਅਸ ਅਸਮਾਨਤਾ ਲਾਗੂ ਕਰਦੇ ਹੋਏ,

ΔS+δQT=δQT<0

ਇਸਤਰਾਂ,

ΔSδQT

ਜਿੱਥੇ ਪਲਟਣਯੋਗ ਟ੍ਰਾਂਸਫੌਰਮੇਸ਼ਨ ਹੋਣ ਤੇ ਸਮਾਨਤਾ ਲਾਗੂ ਹੁੰਦੀ ਹੈ।

ਧਿਆਨ ਦੇਓ ਕਿ ਜੇਕਰ ਪ੍ਰਕ੍ਰਿਆ ਕੋਈ ਏਡੀਆਬੈਟਿਕ ਪ੍ਰਕ੍ਰਿਆ ਹੋਵੇ, ਤਾਂ δQ=0 ਹੁੰਦਾ ਹੈ, ਤਾਂ ਜੋ ΔS0 ਹੋਵੇ ।

ਐਨਰਜੀ, ਉਪਲਬਧ ਵਰਤੋਂਯੋਗ ਕੰਮ

ਫਰਮਾ:ਅਨੁਵਾਦ

ਇਤਿਹਾਸ

ਕਲਾਓਸੀਅਸ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਕਾਰਣ

ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ

ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਇਹ ਸਵੈ-ਸਿੱਧ ਕਰਕੇ ਦੂਜੇ ਨਿਯਮ ਲਈ ਇੱਕ ਵਿਆਖਿਆ ਦਿੰਦਾ ਹੈ ਕਿ ਕੋਈ ਪਦਾਰਥ ਅਜਿਹੇ ਐਟਮਾਂ ਅਤੇ ਮੌਲੀਕਿਊਲਾਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ਜੋ ਸਥਿਰ ਗਤੀ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਸਿਸਟਮ ਅੰਦਰ ਹਰੇਕ ਕਣ ਵਾਸਤੇ ਪੁਜੀਸ਼ਨਾਂ ਅਤੇ ਵਿਲੌਸਟੀਆਂ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਮੂਹ (ਸੈੱਟ) ਸਿਸਟਮ ਦੀ ਸੂਖਮ-ਅਵਸਥਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਥਿਰ ਗਤੀ ਕਾਰਨ, ਸਿਸਟਮ ਅਪਣੀ ਸੂਖਮ-ਅਵਸਥਾ ਨੂੰ ਸਥਿਰ ਤੌਰ ਤੇ ਤਬਦੀਲ ਕਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਸਵੈ-ਸਿੱਧ ਕਰਦਾ ਹੈ ਕਿ, ਸੰਤੁਲਨ ਵਿੱਚ, ਜਿਸ ਵਿੱਚ ਵੀ ਸਿਸਟਮ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਉਹ ਹਰੇਕ ਸੂਖਮ-ਅਵਸਥਾ ਸਮਾਨਤਾ ਦੇ ਨਾਲ ਹੀ ਹੋਂਦ ਰੱਖਦੀ ਹੋਣਾ ਸੰਭਵ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਜਦੋਂ ਇਹ ਧਾਰਨਾ ਬਣਾ ਲਈ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਹ ਸਿੱਧਾ ਹੀ ਇਸ ਨਤੀਜੇ ਵੱਲ ਪ੍ਰੇ੍ਰਿਤ ਕਰਦੀ ਹੈ ਕਿ ਦੂਜਾ ਨਿਯਮ ਜਰੂਰ ਹੀ (ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ) ਕਿਸੇ ਸਟੈਟਿਸਟੀਕਲ (ਆਂਕੜਾਤਮਿਕ) ਸਮਝ ਵਿੱਚ ਲਾਗੂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਯਾਨਿ ਕਿ, ਦੂਜਾ ਨਿਯਮ ਔਸਤ ਉੱਤੇ ਲਾਗੂ ਹੋਵੇਗਾ, ਜੋ 1/√N ਦਰਜੇ ਦੀ ਇੱਕ ਸਟੈਟਿਸਟੀਕਲ ਵੇਰੀਏਸ਼ਨ ਸਮੇਤ ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ N ਸਿਸਟਮ ਵਿਚਲੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਰੋਜ਼ਾਨਾ (ਅਸਥੂਲਕ) ਪ੍ਰਸਥਿਤੀਆਂ ਵਾਸਤੇ, ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਿ ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਲੰਘਣਾ ਹੋਵੇਗੀ ਵਿਵਹਾਰਿਕ ਤੌਰ ਤੇ ਸਿਫਰ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਥੋੜੇ ਕਣਾਂ ਵਾਲੇ ਸਿਸਟਮਾਂ ਵਾਸਤੇ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਮਾਪਦੰਡ, ਜਿਹਨਾਂ ਵਿੱਚ ਐਨਟ੍ਰੌਪੀ ਵੀ ਸ਼ਾਮਿਲ ਹੈ, ਦੂਜੇ ਨਿਯਮ ਦੁਆਰਾ ਅਨੁਮਾਨਾਂ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਆਂਕੜਾਤਮਿਕ ਝੁਕਾਓ ਦਿਖਾ ਸਕਦੇ ਹਨ। ਕਲਾਸੀਕਲ ਥਰਮੋਡਾਇਨਾਮਿਕ ਥਿਊਰੀ ਇਹਨਾਂ ਸਟੈਟਿਸਟੀਕਲ ਵੇਰੀਏਸ਼ਨਾਂ ਨਾਲ ਨਹੀਂ ਵਰਤਦੀ ।

ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਤੋਂ ਡੈਰੀਵੇਸ਼ਨ (ਵਿਓਂਤਬੰਦੀ)

ਫਰਮਾ:Further information ਲੋਸ਼ਮਿਡਟ ਦੀ ਪਹੇਲੀ ਕਾਰਣ, ਦੂਜੇ ਨਿਯਮ ਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਭੂਤਕਾਲ ਦੇ ਸਬੰਧ ਵਿੱਚ ਇੱਕ ਧਾਰਨਾ ਬਣਾਉਣੀ ਪੈਂਦੀ ਹੈ, ਕਿ ਭੂਤਕਾਲ ਵਿੱਚ ਕਿਸੇ ਵਕਤ ਸਿਸਟਮ ਗੈਰ-ਸਹਿ-ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ; ਜੋ ਸਰਲ ਪ੍ਰੋਬੇਬਿਲਿਟਾਤਮਿਕ ਇਲਾਜ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਇਹ ਧਾਰਨਾ ਆਮਤੌਰ ਤੇ ਇੱਕ ਹੱਦ ਸ਼ਰਤ ਦੇ ਤੌਰ ਤੇ ਸੋਚੀ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਇਸਤਰਾਂ ਦੂਜਾ ਨਿਯਮ ਅੰਤ ਨੂੰ ਭੂਤਕਾਲ ਅੰਦਰ ਕਿਤੇ ਨਾ ਕਿਤੇ ਸ਼ੁਰੂਆਤੀ ਸ਼ਰਤਾਂ ਦਾ ਇੱਕ ਨਤੀਜਾ ਬਣ ਜਾਂਦਾ ਹੈ, ਸ਼ਾਇਦ ਬ੍ਰਹਿਮੰਡ (ਬਿੱਗ ਬੈਂਗ) ਦੀ ਸ਼ੁਰੂਆਤ ਵੇਲੇ, ਬੇਸ਼ੱਕ ਹੋਰ ਕਥਾਨਕ ਦ੍ਰਿਸ਼ ਵੀ ਸੁਝਾਏ ਗਏ ਹਨ।[43][44][45]

ਇਹਨਾਂ ਧਾਰਨਾਵਾਂ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਨਹੀਂ ਰਹਿੰਦਾ, ਸਗੋਂ ਇਹ ਬੁਨਿਆਦੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦਾ ਇੱਕ ਨਤੀਜਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਬਰਾਬਰ ਦਾ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੋਂ ਤੱਕ ਇਹ ਸਪੱਸ਼ਟ ਰਹੇ ਕਿ ਸਰਲ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਤਰਕਾਂ ਸਿਰਫ ਭਵਿੱਖ ਤੇ ਹੀ ਲਾਗੂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜਦੋਂਕਿ ਭੂਤਕਾਲ ਵਾਸਤੇ ਜਾਣਕਾਰੀ ਦੇ ਅਜਿਹੇ ਬਾਹਰੀ ਸੋਮੇ ਹੁੰਦੇ ਹਨ ਜੋ ਸਾਨੂੰ ਦੱਸਦੇ ਹਨ ਕਿ ਇਹ ਘੱਟ ਐਨਟ੍ਰੌਪੀ ਹੁੰਦੀ ਸੀ। ਫਰਮਾ:Citation needed ਦੂਜੇ ਨਿਯਮ ਦਾ ਪਹਿਲਾ ਹਿੱਸਾ, ਜੋ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਥਰਮਲ ਤੌਰ ਤੇ ਆਇਸੋਲੇਟ ਕੀਤੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਸਿਰਫ ਵਧ ਸਕਦੀ ਹੈ, ਬਰਬਾਰ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦਾ ਇੱਕ ਸੂਖਮ (ਮਮੂਲੀ) ਨਤੀਜਾ ਹੈ, ਜੇਕਰ ਅਸੀਂ ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰਲੇ ਸਿਸਟਮਾਂ ਤੱਕ ਐਨਟ੍ਰੌਪੀ ਦੀ ਧਾਰਨਾ ਨੂੰ ਸੀਮਤ ਕਰ ਦੇਈਏ । ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰਲੇ ਕਿਸੇ ਆਇਸੋਲੇਟ ਕੀਤੇ ਗਏ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਜੋ E ਜਿੰਨੀ ਮਾਤਰਾ ਦੀ ਐਨਰਜੀ ਰੱਖਦੀ ਹੋਵੇ, ਇਹ ਹੁੰਦੀ ਹੈ:

S=kBln[Ω(E)]

ਜਿੱਥੇ Ω(E) ਉਹਨਾਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ ਹੈ ਜੋ E ਅਤੇ E+δE ਦਰਮਿਆਨ ਇੱਕ ਛੋਟੇ ਅੰਤਰਾਲ ਵਿੱਚ ਹੁੰਦੀਆੰ ਹਨ। ਇੱਥੇ δE ਇੱਕ ਫਿਕਸ ਕੀਤਾ ਹੋਇਆ ਅਸਥੂਲਕ ਤੌਰ ਤੇ ਛੋਟਾ ਐਨਰਜੀ ਅੰਤਰਾਲ ਹੁੰਦਾ ਹੈ। ਸਖਤੀ ਨਾਲ ਕਹੀਏ ਤਾਂ ਇਸਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਐਨਟ੍ਰੌਪੀ δE ਦੀ ਚੋਣ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਹੱਦ (ਯਾਨਿ ਕਿ, ਅੰਨਤ ਤੌਰ ਤੇ ਵਿਸ਼ਾਲ ਸਿਸਟਮ ਅਕਾਰ ਦੀ ਹੱਦ ਵਿੱਚ) ਅੰਦਰ, ਸਪੈਸਫਿਕ ਐਨਟ੍ਰੌਪੀ (ਪ੍ਰਤਿ ਯੂਨਿਟ ਵੌਲੀਊਮ ਜਾਂ ਪ੍ਰਤਿ ਯੂਨਿਟ ਪੁੰਜ ਐਨਟ੍ਰੌਪੀ) δE ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੀ ।

ਮੰਨ ਲਓ ਸਾਡੇ ਕੋਲ ਇੱਕ ਅਜਿਹਾ ਆਇਸੋਲੇਟ ਕੀਤਾ ਗਿਆ ਸਿਸਟਮ ਹੈ ਜਿਸਦੀ ਅਸਥੂਲਕ ਅਵਸਥਾ ਨੂੰ ਕੁੱਝ ਅਸਥਿਰਾਂਕਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੋਵੇ । ਇਹ ਅਸਥੂਲਕ ਅਸਥਿਰਾਂਕ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੁੱਲ ਵੌਲੀਊਮ, ਸਿਸਟਮ ਅੰਦਰਲੇ ਪਿਸਟਨਾਂ ਦੀਆਂ ਪੁਜੀਸ਼ਨਾਂ ਆਦਿ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਫੇਰ Ω ਇਹਨਾਂ ਆਸਥਿਰਾਂਕਾਂ ਦੇ ਮੁੱਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰੇਗਾ । ਜੇਕਰ ਕੋਈ ਅਸਥਿਰਾਂਕ ਫਿਕਸ ਨਹੀੰ ਕੀਤਾ ਗਿਆ ਹੁੱਦਾ, (ਯਾਨਿ ਕਿ, ਅਸੀਂ ਕਿਸੇ ਪਿਸਟਨ ਨੂੰ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਪੁਜੀਸ਼ਨ ਵਿੱਚ ਨਹੀਂ ਬੰਨਦੇ), ਤਾਂ ਕਿਉਂਕਿ ਸਾਰੀਆਂ ਸਕ੍ਰਿਆਯੋਗ ਅਵਸਥਾਵਾਂ ਇੱਕ ਸਮਾਨ ਹੀ ਸੰਤੁਲਨ ਵਿੱਚ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇਸਲਈ ਸੰਤੁਲਨ ਅੰਦਰਲਾ ਸੁਤੰਤਰ ਅਸਥਿਰਾਂਕ ਅਜਿਹਾ ਹੋਵੇਗਾ ਕਿ Ω ਇਸਤਰਾਂ ਉੱਚਤਮ ਮੁੱਲ ਪ੍ਰਾਪਤ ਕਰ ਲਏਗਾ ਜਿਵੇਂ ਸੰਤੁਲਨ ਵਿੱਚ ਇਹ ਸਭ ਤੋਂ ਜਿਆਦਾ ਖੋਜੀ ਜਾ ਸਕਣ ਯੋਗ ਪ੍ਰਸਥਿਤੀ ਹੋਵੇ ।

ਜੇਕਰ ਅਸਥਿਰਾਂਕ ਨੂੰ ਸ਼ੁਰੂਆਤ ਵਿੱਚ ਕਿਸੇ ਮੁੱਲ ਉੱਤੇ ਫਿਕਸ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਸੁਤੰਤਰ ਕਰਨ ਤੇ ਅਤੇ ਉਦੋਂ ਜਦੋਂ ਨਵਾੰ ਸੰਤੁਲਨ ਅੱਪੜ ਜਾਂਦਾ ਹੈ, ਤੱਥ ਕਿ, ਅਸਥਿਰਾਂਕ ਅਪਣੇ ਆਪ ਨੂੰ ਇਸਤਰਾਂ ਅਡਜਸਟ ਕਰ ਲਏਗਾ ਕਿ Ω ਉੱਚਤਮ ਰਹੇ, ਇਹ ਭਾਵ ਰੱਖਦਾ ਹੈ ਕਿ ਐਨਟ੍ਰੌਪੀ ਵਧ ਚੁੱਕੀ ਹੋਵੇਗੀ ਹੈ ਜਾਂ ਇਹ ਉਹੀ ਰਹੇਗੀ (ਜੇਕਰ ਉਹ ਮੁੱਲ ਜਿਸ ਉੱਤੇ ਅਸਥਿਰਾੰਕ ਫਿਕਸ ਕੀਤਾ ਗਿਆ ਸੀ।, ਸੰਤੁਲਨ ਮੁੱਲ ਹੀ ਹੋਵੇ) ।

ਕਲਪਨਾ ਕਰੋ ਕਿ ਅਸੀਂ ਕਿਸੇ ਸੰਤੁਲਨ ਪ੍ਰਸਥਿਤੀ ਤੋਂ ਸ਼ੁਰੂਆਤ ਕਰਦੇ ਹਾਂ ਅਤੇ ਅਸੀਂ ਕਿਸੇ ਅਸਥਰਿਾਂਕ ਤੋਂ ਇੱਕ ਪਾਬੰਧੀ ਹਟਾ ਦਿੰਦੇ ਹਾਂ । ਫੇਰ ਇਹ ਕੁੱਝ ਕਰ ਚੁੱਕਣ ਤੋਂ ਤੁਰੰਤ ਬਾਦ, ਸਕ੍ਰਿਅਯੋਗ ਸੂਖਮ-ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ Ω ਹੁੰਦੀ ਹੈ, ਪਰ ਅਜੇ ਵੀ ਸੰਤੁਲਨ ਨਹੀਂ ਅੱਪੜਿਆ ਹੁੰਦਾ, ਇਸਲਈ ਸਿਸਟਮ ਦੇ ਕਿਸੇ ਸਕ੍ਰਿਅਯੋਗ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਦੀਆਂ ਵਾਸਤਵਿਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀਆਂ ਅਜੇ ਵੀ 1/Ω ਵਾਲੀ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋਈਆਂ ਹੁੰਦੀਆਂ । ਅਸੀੰ ਪਹਿਲਾਂ ਹੀ ਸਾਬਤ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਅੰਤਿਮ ਸੰਤੁਲਨ ਅਵਸਥਾ ਅੰਦਰ, ਐਨਟ੍ਰੌਪੀ ਵਧ ਚੁੱਕੀ ਹੋਵੇਗੀ ਜਾਂ ਪਿਛਲੀ ਸੰਤੁਲਨ ਅਵਸਥਾ ਦੇ ਸਾਪੇਖਿਕ ਓਸੇ ਮੁੱਲ ਤੇ ਕਾਇਮ ਰਹੇਗੀ । ਬੋਲਟਜ਼ਮਨ ਦੀ H-ਥਿਊਰਮ, ਫੇਰ ਵੀ, ਸਾਬਤ ਕਰਦੀ ਹੈ ਕਿ ਸੰਤੁਲਨ ਅਵਸਥਾ ਦੇ ਮੱਧ ਤੋਂ ਬਾਹਰ ਦੌਰਾਨ, ਮਾਤਰਾ ਫਰਮਾ:Math ਮੋਨੋਟੌਨੀਕਲ ਤੌਰ ਤੇ ਵਕਤ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵਧਦੀ ਜਾਂਦੀ ਹੈ।

ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਲਈ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਦੀ ਵਿਓਂਤਬੰਦੀ

ਦੂਜੇ ਨਿਯਮ ਦਾ ਦੂਜਾ ਹਿੱਸਾ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕੋਈ ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਅਧੀਨ ਗੁਜ਼ਰ ਰਹੇ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਇਸਤਰਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ:

dS=δQT

ਜਿੱਥੇ ਤਾਪਮਾਨ ਨੂੰ ਇਸਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:

1kBTβdln[Ω(E)]dE

ਇਸ ਪਰਿਭਾਸ਼ਾ ਲਈ ਸਪੱਸ਼ਟੀਕਰਨ ਵਾਸਤੇ ਇੱਥੇ ਦੇਖੋ । ਕਲਪਨਾ ਕਰੋ ਕਿ ਕੋਈ ਸਿਸਟਮ ਕੁੱਝ ਬਾਹਰੀ ਪੈਰਾਮੀਟਰ, x ਰੱਖਦਾ ਹੋਵੇ, ਜੋ ਬਦਲੇ ਜਾ ਸਕਦੇ ਹੋਣ । ਆਮਤੌਰ ਤੇ, ਸਿਸਟਮ ਦੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ x ਉੱਤੇ ਨਿਰਭਰ ਕਰਨਗੀਆਂ । ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਐਡੀਆਬੈਟਿਕ ਥਿਊਰਮ ਅਨੁਸਾਰ, ਸਿਸਟਮ ਦੇ ਹੈਮਿਲਟੋਨੀਅਨ ਦੀ ਇੱਕ ਅਨੰਤ ਤੌਰ ਤੇ ਧੀਮੀ ਤਬਦੀਲੀ ਦੀ ਹੱਦ ਅੰਦਰ, ਸਿਸਟਮ ਉਸੇ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾ ਵਿੱਚ ਕਾਇਮ ਰਹੇਗਾ ਅਤੇ ਇਸ ਕਾਰਨ ਜਿਸ ਵਿੱਚ ਇਹ ਹੁੱਦੀ ਹੈ ਓਸ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾ ਦੀ ਐਨਰਜੀ ਵਿੱਚ ਤਬਦੀਲੀ ਅਨੁਸਾਰ ਇਸਦੀ ਐਨਰਜੀ ਤਬਦੀਲ ਹੁੰਦੀ ਹੈ।

ਸਰਵਾਸਧਾਰਨ ਕੀਤਾ ਗਿਆ ਫੋਰਸ, X, ਜੋ ਬਾਹਰੀ ਅਸਥਿਰਾਂਕ x ਨਾਲ ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ ਇਸਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ Xdx ਸਿਸਟਮ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਹੋਵੇ ਜੇਕਰ x ਨੂੰ ਇੱਕ dx ਮਾਤਰਾ ਜਿੰਨਾ ਵਧਾ ਦਿੱਤਾ ਜਾਵੇ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ x ਵੌਲੀਊਮ ਹੋਵੇ, ਤਾਂ X ਪ੍ਰੈੱਸ਼ਰ ਹੋਵੇਗਾ । ਕਿਸੇ ਸਿਸਟਮ ਵਾਸਤੇ ਸਰਵ-ਸਧਾਰਨ ਕੀਤਾ ਗਿਆ ਫੋਰਸ (ਬਲ) ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾ Er ਵਿੱਚ ਹੁੰਦਾ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ਜੋ ਇਸ ਸਮੀਕਰਨ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ:

X=dErdx

ਕਿਉਂਕਿ ਸਿਸਟਮ, δE ਦੇ ਇੱਕ ਅੰਤਰਾਲ ਅੰਦਰ ਕਿਸੇ ਵੀ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾ ਅੰਦਰ ਹੋ ਸਕਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਸਿਸਟਮ ਵਾਸਤੇ ਸਰਵ-ਸਧਾਰਨ ਕੀਤੇ ਗਏ ਫੋਰਸ ਨੂੰ ਉੱਪਰਲੀ ਸਮੀਕਰਨ ਦੇ ਉਮੀਦ ਮੁੱਲ (ਐਕਸਪੈਕਟੇਸ਼ਨ-ਵੈਲੀਊ) ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ:

X=dErdx

ਔਸਤ ਕੱਢਣ ਲਈ, ਅਸੀਂ Ω(E) ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਇਹ ਗਿਣਤੀ ਗਿਣ ਕੇ ਪਾਰਟੀਸ਼ਨਾਂ (ਹਿੱਸੇ) ਕਰ ਦਿੰਦੇ ਹਾਂ ਕਿ Y ਅਤੇ Y+δY ਦਰਮਿਆਨ ਇੱਕ ਦਾਇਰੇ (ਰੇਂਜ) ਅੰਦਰ dErdx ਵਾਸਤੇ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿੰਨੀਆਂ ਕੋਈ ਮੁੱਲ ਰੱਖਦੀਆਂ ਹਨ। ਇਸ ਨੰਬਰ ਨੂੰ

ΩY(E) ਪੁਕਾਰਦੇ ਹੋਏ, ਸਾਡੇ ਕੋਲ ਇਹ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ:

Ω(E)=YΩY(E)

ਸਰਵ-ਸਧਾਰਨ ਕੀਤੇ ਫੋਰਸ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਵਾਲੀ ਔਸਤ ਨੂੰ ਹੁਣ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ:

X=1Ω(E)YYΩY(E)

ਅਸੀਂ ਇਸਨੂੰ ਇਸਤਰਾਂ ਅੱਗੇ ਲਿਖਣ ਮੁਤਾਬਕ, ਸਥਿਰ ਐਨਰਜੀ E ਉੱਤੇ x ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਐਨਟ੍ਰੌਪੀ ਦੇ ਡੈਰੀਵੇਸ਼ਨ (ਵਿਓਂਤਬੰਦੀ) ਨਾਲ ਸਬੰਧਤ ਕਰ ਸਕਦੇ ਹਾਂ; ਮੰਨ ਲਓ ਅਸੀਂ x ਨੂੰ x + dx ਤੱਕ ਤਬਦੀਲ ਕਰਦੇ ਹਾਂ । ਫੇਰ Ω(E) ਬਦਲ ਜਾਵੇਗਾ ਕਿਉਂਕਿ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ x ਉੱਤੇ ਨਿਰਭਰ ਹੁੰਦੀਆਂ ਹਨ, ਜੋ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਨੂੰ E ਅਤੇ E+δE ਦਰਮਿਆਨ ਰੇਂਜ ਦੇ ਅੰਦਰ ਜਾੰ ਬਾਹਰ ਜਾਣ ਲਈ ਮਜਬੂਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਆਓ ਅਸੀਂ ਉਹਨਾਂ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਉੱਤੇ ਧਿਆਨ ਕੇੱਦ੍ਰਿਤ ਕਰੀਏ ਜਿਹਨਾਂ ਵਾਸਤੇ dErdx ਦਾ ਮੁੱਲ Y ਅਤੇ Y+δY ਦਰਮਿਆਨ ਰੇਂਜ ਅੰਦਰ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਐਨਰਜੀ ਵਿੱਚ Y dx ਵਾਧਾ ਕਰ ਲੈਂਦੀਆਂ ਹਨ, ਇਸਲਈ ਅਜਿਹੀਆਂ ਸਾਰੀਆਂ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਜੋ E – Y dx ਤੋਂ E ਤੱਕ ਰੇਂਜ ਅੰਤ੍ਰਾਲ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, E ਦੇ ਥੱਲੇ ਤੋਂ E ਦੇ ਉੱਪਰ ਵੱਲ ਚਲੇ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਇਹਨਾਂ ਵਰਗੀਆਂ ਐਨਰਗੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ;

NY(E)=ΩY(E)δEYdx

ਜੇਕਰ YdxδE, ਇਹ ਸਾਰੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ E ਅਤੇ E+δE ਦਰਮਿਆਨ ਰੇਂਜ ਵਿੱਚ ਚਲੀਆਂ ਜਾਣਗੀਆਂ ਅਤੇ Ω ਵਿੱਚ ਇੱਕ ਵਾਧੇ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਣਗੀਆਂ । ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ ਜੋ E+δE ਤੋਂ ਥੱਲੇ ਤੋਂ E+δE ਤੋਂ ਉੱਪਰ ਚਲੇ ਜਾਂਦੀਆਂ ਹਨ, ਬੇਸ਼ੱਕ, NY(E+δE) ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਅੰਤਰ;

NY(E)NY(E+δE)

ਇਸਤਰਾਂ Ω ਵਿੱਚ ਵਾਧੇ ਪ੍ਰਤਿ ਸ਼ੁੱਧ ਯੋਗਦਾਨ ਹੁੰਦਾ ਹੈ। ਧਿਆਨ ਦੇਓ ਕਿ ਜੇਕਰ Y dx ਦਾ ਮੁੱਲ δE ਤੋਂ ਜਿਆਦਾ ਹੋਵੇ, ਤਾਂ ਅਜਿਹੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਹੋਣਗੀਆਂ ਜੋ E ਤੋਂ E+δE ਦੇ ਉੱਪਰ ਤੱਕ ਚਲੇ ਜਾਣਗੀਆਂ । ਇਹਨਾਂ ਦੀ ਗਿਣਤੀ NY(E) ਅਤੇ NY(E+δE), ਦੋਹਾਂ ਵਿੱਚ ਹੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਸਲਈ ਓਸ ਮਾਮਲੇ ਵਿੱਚ ਉੱਪ ਦੱਸੀ ਸਮੀਕਰਨ ਸਹੀ (ਲਾਗੂ) ਰਹਿੰਦੀ ਹੈ।

ਉੱਪਰਲੀ ਸਮੀਕਰਨ ਨੂੰ E ਪ੍ਰਤਿ ਇੱਕ ਡੈਰੀਵੇਟਿਵ ਦੇ ਤੌਰ ਤੇ ਲਿਖਦੇ ਹੋਏ ਅਤੇ Y ਉੱਪਰ ਜੋੜਦੇ ਹੋਏ ਇਹ ਇਕੁਏਸ਼ਨ ਬਣਦੀ ਹੈ:

(Ωx)E=YY(ΩYE)x=((ΩX)E)x

x ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ Ω ਦਾ ਲੌਗਰਿਥਮਿਕ ਡੈਰੀਵੇਟਿਵ ਇਸਤਰਾਂ ਇੱਥੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ:

(ln(Ω)x)E=βX+(XE)x

ਪਹਿਲੀ ਰਕਮ ਤੀਬਰ ਹੈ, ਯਾਨਿ ਕਿ, ਇਹ ਸਿਸਟਮ ਦੇ ਅਕਾਰ ਦੇ ਪੈਮਾਨੇ ਦੀ ਨਹੀਂ ਹੈ। ਇਸਤੋਂ ਵਿਰੁੱਧ, ਆਖਰੀ ਰਕਮ ਦਾ ਪੈਮਾਨਾ ਇਵੇਂ ਹੈ ਜਿਵੇਂ ਉਲਟ ਸਿਸਟਮ ਅਕਾਰ ਹੋਵੇ ਅਤੇ ਇਹ ਇਸਤਰਾਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਹੱਦ ਅੰਦਰ ਮੁੱਕ ਜਾਵੇਗੀ । ਇਸਤਰਾਂ ਅਸੀਂ ਖੋਜਦੇ ਹਾਂ ਕਿ:

(Sx)E=XT

ਇਸਨੂੱ

(SE)x=1T

ਨਾਲ ਮੇਲਦੇ ਹੋਏ ਇਹ ਮਿਲਦਾ ਹੈ:

dS=(SE)xdE+(Sx)Edx=dET+XTdx=δQT

ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਦੁਆਰਾ ਦਰਸਾਏ ਜਾਂਦੇ ਸਿਸਟਮਾਂ ਵਾਸਤੇ ਵਿਓਂਤਬੰਦੀ

ਜੇਕਰ ਕੋਈ ਸਿਸਟਮ ਕਿਸੇ ਤਾਪਮਾਨ T ਉੱਤੇ ਹੀਟ ਬਾਥ ਨਾਲ ਥਰਮਲ-ਸੰਪ੍ਰਕ ਵਿੱਚ ਹੋਵੇ, ਤਾਂ, ਸੰਤੁਲਨ ਵਿੱਚ, ਐਨਰਜੀ ਆਈਗਨਮੁੱਲਾਂ ਉੱਤੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡ ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ:

Pj=exp(EjkBT)Z

ਇੱਥੇ Z ਇੱਕ ਫੈਕਟਰ (ਤੋੜ ਕੇ ਲਿਖਿਆ ਜਾ ਸਕਣ ਵਾਲ਼ਾ ਹਿੱਸਾ) ਹੈ ਜੋ ਸਾਰੀਆਂ ਪ੍ਰੋਬੇਬਿਲਿਟੀਆਂ ਦੇ ਜੋੜ ਨੂੰ 1 ਤੱਕ ਨੌਰਮਲਾਇਜ਼ (ਮਾਨਕੀਕ੍ਰਿਤ) ਕਰਦਾ ਹੈ, ਇਸ ਫੰਕਸ਼ਨ ਨੂੰ ਪਾਰਟੀਸ਼ਨ ਫੰਕਸ਼ਨ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਤਾਪਮਾਨ ਵਿੱਚ ਅਤੇ ਉਹਨਾਂ ਬਾਹਰੀ ਪੈਰਾਮੀਟਰਾਂ (ਮਾਪਦੰਡਾਂ) ਵਿੱਚ ਇੱਕ ਅਤਿਸੂਖਮ ਪਲਟਣਯੋਗ ਤਬਦੀਲੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ ਜਿਹਨਾਂ ਉੱਤੇ ਊੇਰਜਾ ਲੈਵਲ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਐਨਟ੍ਰੌਪੀ ਦੇ ਸਰਵ ਸਧਾਰਨ ਫਾਰਮੂਲੇ:

S=kBjPjln(Pj)

ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ

dS=kBjln(Pj)dPj

ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਵਾਸਤੇ Pj ਲਈ ਫਾਰਮੂਲਾ ਭਰਦੇ ਹੋਏ ਇੱਥੇ ਇਹ ਮਿਲਦਾ ਹੈ:

dS=1TjEjdPj=1Tjd(EjPj)1TjPjdEj=dE+δWT=δQT

ਜੀਵਤ ਜੀਵ

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਦੋ ਸਿਧਾਂਤਿਕ ਤਰੀਕੇ ਹਨ,

  1. ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਦੂਜੀ ਅਵਸਥਾ ਤੱਕ ਦੇ ਗੁਜ਼ਰਨ ਰਾਹੀਂ, ਅਤੇ
  2. ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਰਾਹੀਂ, ਜਿਹਨਾਂ ਰਾਹੀਂ ਸਿਸਟਮ ਤਬਦੀਲ ਕੀਤੇ ਬਗੈਰ ਛੱਡ ਦਿੱਤਾ ਜਾਂਦਾ ਹੈ, ਜਦੋਂਕਿ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਕੁੱਲ ਐਨਟ੍ਰੌਪੀ ਵਧ ਜਾਂਦੀ ਹੈ।

ਇਹ ਦੋ ਤਰੀਕੇ ਜਿੰਦਗੀ ਦੀਆਂ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਮੱਦਦ ਕਰਦੇ ਹਨ। ਇਹ ਪ੍ਰਸੰਗ ਜਿਆਦਾਤਰ ਇਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਸਕੋਪ ਤੋਂ ਪਰੇ ਦੀ ਗੱਲ ਹੈ, ਪਰ ਬਹੁਤ ਸਾਰੇ ਵਿਦਵਾਨਾਂ ਦੁਆਰਾ ਵਿਚਾਰਿਆ ਗਿਆ ਹੈ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਐਰਵਿਨ ਸ਼੍ਰੋਡਿੰਜਰ, ਲੀਓਨ ਬ੍ਰੀਲੋਇਨ[46] ਅਤੇ ਇਜ਼ਾਕ ਐਜ਼ੀਮੋਵ। ਇਹ ਤਾਜ਼ਾ ਰਿਸਰਚ ਦਾ ਪ੍ਰਸੰਗ (ਟੌਪਿਕ) ਵੀ ਹੈ।

ਇੱਕ ਜਾਇਜ ਸੰਖੇਪਤਾ ਤੱਕ, ਜੀਵਤ ਜੀਵਾਂ ਨੂੰ ਦੂਜੇ ਤਰੀਕੇ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਦੇ ਤੌਰ ਤੇ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਲੱਗਪਗ ਤੌਰ ਤੇ, ਦਿਨ-ਬ-ਦਿਨ ਕਿਸੇ ਜਾਨਵਰ ਦੇ ਭੌਤਿਕੀ ਅਵਸਥਾ ਚੱਕਰ, ਜਾਨਵਰ ਨੂੰ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਤਬਦੀਲ ਕਰੇ ਬਗੈਰ ਛੱਡਦੇ ਜਾਂਦੇ ਹਨ। ਜਾਨਵਰ ਭੋਜਨ, ਪਾਣੀ, ਅਤੇ ਔਕਸੀਜਨ ਲੈਂਦੇ ਹਨ, ਅਤੇ, ਮੈਟਾਬੋਲਿਜ਼ਮ ਦੇ ਨਤੀਜੇ ਵਜੋਂ, ਟੁੱਟੇ ਉਤਪਾਦ ਅਤੇ ਤਾਪ ਬਾਹਰ ਕੱਢਦੇ ਹਨ। ਰੁੱਖ ਸੂਰਜਾ ਤੋਂ ਰੇਡੀਏਟਿਵ ਊਰਜਾ ਲੈਂਦੇ ਹਨ, ਜਿਸਨੂੰ ਤਾਪ, ਅਤੇ ਕਾਰਬਨ ਡਾਈਔਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ ਔਕਸੀਜਨ ਬਾਹਰ ਕੱਢਦੇ ਹਨ। ਇਸਤਰਾਂ ਉਹ ਵਧਦੇ ਫੁੱਲਦੇ ਹਨ। ਅੰਤ ਨੂੰ ਉਹ ਮਰ ਜਾਂਦੇ ਹਨ, ਅਤੇ ਦੁਰਗੰਧ ਬਚ ਜਾਂਦੀ ਹੈ। ਇਸਨੂੰ ਇੱਕ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਕਿਸੇ ਉੱਚ ਤਾਪਮਾਨ ਸੋਮੇ ਤੋਂ ਹੁੰਦਾ ਹੈ, ਜੋ ਸੂਰਜ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੀ ਊਰਜਾ ਇੱਕ ਘੱਟ ਤਾਪਮਾਨ ਵਾਲੇ ਸਿੰਕ, ਮਿੱਟੀ ਵੱਲ ਗੁਜ਼ਰਦੀ ਹੈ। ਇਹ ਰੁੱਖਾਂ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਇੱਕ ਵਾਧਾ ਹੈ। ਇਸਤਰਾਂ ਜਾਨਵਰ ਅਤੇ ਰੁੱਖ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਪਾਲਣਾ ਕਰਦੇ ਹਨ, ਜੋ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਵਿਚਾਰੇ ਜਾਂਦੇ ਹਨ। ਹੀਟ ਇੰਜਣਾਂ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਦੀਆਂ ਸਧਾਰਨ ਧਾਰਨਾਵਾਂ ਇਸ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਮੁਸ਼ਕਿਲ ਨਾਲ ਹੀ ਲਾਗੂ ਹੁੰਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਇਹ ਬੰਦ ਸਿਸਟਮ ਮੰਨਦੀਆਂ ਹਨ।

ਥਰਮੋਡਾਇਨਾਮਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ, ਜੋ ਇੱਕ ਸੰਤੁਲਨ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਹੋਰ ਸੰਤੁਲਨ ਅਵਸਥਾ ਤੱਕ ਲਾਂਘੇ ਨੂੰ ਪਹਿਲੇ ਤਰੀਕੇ ਵਿੱਚ ਵਿਚਾਰਦਾ ਹੈ, ਅਨੁਸਾਰ ਸਿਰਫ ਇੱਕ ਸੰਖੇਪ ਤਸਵੀਰ ਹੀ ਦਿਸਦੀ ਹੈ, ਕਿਉਂਕਿ ਜੀਵਤ ਜੀਵ ਕਦੇ ਕਦੇ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ । ਜੀਵਤ ਜੀਵ ਜਰੂਰ ਹੀ ਖੁੱਲੇ ਸਿਸਟਮਾਂ ਦੇ ਤੌਰ ਤੇ ਵਿਚਾਰੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਹ ਭੋਜਨ ਲੈਂਦੇ ਹਨ ਅਤੇ ਵੇਸਟ ਉਤਪਾਦ ਬਾਹਰ ਕੱਢ ਦਿੰਦੇ ਹਨ। ਖੁੱਲੇ ਸਿਸਟਮਾਂ ਦਾ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਵਰਤਮਾਨ ਤੌਰ ਤੇ ਅਕਸਰ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਹੋਰ ਅਵਸਥਾ ਤੱਕ ਲਾਂਘੇ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਵਿਚਾਰਿਆ ਜਾਂਦਾ ਹੈ, ਜਾਂ ਸਥਾਨਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਸੰਖੇਪਤਾ ਅੰਦਰ ਪ੍ਰਵਾਹ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਵਿਚਾਰਿਆ ਜਾਂਦਾ ਹੈ। ਜੀਵਤ ਜੀਵਾਂ ਵਾਲੀ ਸਮੱਸਿਆ ਨੂੰ ਗੈਰ-ਤਬਦੀਲ ਹੁੰਦੇ ਪ੍ਰਵਾਹਾਂ ਵਾਲੀ ਇੱਕ ਸਥਿਰ ਅਵਸਥਾ ਸਦੀ ਸੰਖੇਪਤਾ ਨੂੰ ਮੰਨ ਕੇ ਹੋਰ ਅੱਗੇ ਸਰਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਸੰਖੇਪਤਾਵਾਂ ਵਾਸਤੇ ਐਨਟ੍ਰੌਪੀ ਪੈਦਾਵਰ ਦੇ ਸਰਵ ਸਧਾਰਨ ਸਿਧਾਂਤ ਰਿਸਰਚ ਜਾਂ ਅਣਸੁਲਝੀ ਵਰਤਮਾਨ ਚਰਚਾ ਪ੍ਰਤਿ ਹੁੰਦੇ ਹਨ। ਹੋਰ ਤਾਂ ਹੋਰ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਉੱਤੇ ਇਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਲਏ ਗਏ ਆਈਡੀਏ (ਵਿਚਾਰ) ਜੀਵਤ ਜੀਵਾਂ ਬਾਬਤ ਗਿਆਨ-ਭਰਪੂਰ ਹਨ।

ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਿਸਟਮ

ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਅੰਦਰ, ਜੋ ਅਪਣੇ ਵੇਰਵੇ ਵਾਸਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਮੰਗ ਨਹੀਂ ਕਰਦੇ, ਵਸਤੂਆਂ ਹਮੇਸ਼ਾਂ ਹੀ ਪੌਜ਼ਟਿਵ ਹੀਟ ਸਮਰਥਾ ਰੱਖਦੀਆਂ ਹਨ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਐਨਰਜੀ ਵਧਣ ਨਾਲ ਤਾਪਮਾਨ ਵੀ ਵਧ ਜਾਂਦਾ ਹੈ। ਇਸਲਈ, ਜਦੋਂ ਊਰਜਾ ਕਿਸੇ ਉੱਚ-ਤਾਪਮਾਨ ਵਾਲੀ ਵਸਤੂ ਤੋਂ ਕਿਸੇ ਘੱਟ-ਤਾਪਮਾਨ ਵਾਲ਼ੀ ਵਸਤੂ ਵੱਲ ਵਹਿੰਦੀ ਹੈ, ਤਾਂ ਸੋਮੇ ਦਾ ਤਾਪਮਾਨ ਘਟ ਜਾਂਦਾ ਹੈ ਜਦੋਂਕਿ ਸਿੰਕ ਤਾਪਮਾਨ ਵਧ ਜਾਂਦਾ ਹੈ; ਜਿਸ ਕਾਰਨ ਤਾਪਮਾਨ-ਅੰਤਰ ਵਕਤ ਪਾ ਕੇ ਮੁੱਕਣ ਵੱਲ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਾਮਲਾ ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਹਮੇਸ਼ਾਂ ਨਹੀਂ ਹੁੰਦਾ ਜਿਹਨਾਂ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨਲ ਬਲ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਅਜਿਹੇ ਸਿਸਟਮ ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦੇ ਅਸਮਾਨ ਖਿੰਡਾਓ ਵੱਲ ਤਤਕਾਲ ਬਦਲ ਸਕਦੇ ਹਨ। ਇਹ ਬ੍ਰਹਿਮੰਡ ਉੱਤੇ ਵਿਸ਼ਾਲ ਪੈਮਾਨੇ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਸ ਉੱਤੇ ਦੂਜਾ ਨਿਯਮ ਲਾਗੂ ਕਰਨਾ ਕਠਿਨ ਜਾਂ ਅਸੰਭਵ ਹੀ ਹੋ ਸਕਦਾ ਹੈ। [47] ਇਸਤੋਂ ਪਰੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਨਾਲ ਦਰਸਾਏ ਜਾਂਦੇ ਸਿਸਟਮਾਂ ਦਾ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਸਕੋਪ ਤੋਂ ਪਰੇ ਦੀ ਗੱਲ ਹੈ।

ਗੈਰ-ਸੰਤੁਲਿਤ ਅਵਸਥਾਵਾਂ

ਫਰਮਾ:Main article ਕਲਾਸੀਕਲ ਜਾਂ ਸੰਤੁਲਨ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੀ ਥਿਊਰੀ ਆਦਰਸ਼ਬੱਧ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇੱਕ ਪ੍ਰਮੁੱਖ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਜਾਂ ਧਾਰਨਾ, ਅਕਸਰ ਜਿਸਨੂੰ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਬਿਆਨ ਨਹੀਂ ਕੀਤਾ ਜਾਂਦਾ, ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਦੀ ਹੋਂਦ ਹੈ ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀਆਂ ਅਪਣੀਆਂ ਖੁਦ ਦੀਆਂ ਅੰਦਰੂਨੀ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਆਮਤੌਰ ਤੇ, ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਵਕਤ ਤੇ ਕਿਸੇ ਭੌਤਿਕੀ ਸਿਸਟਮ ਨੂੰ ਰੱਖਣ ਵਾਲ਼ਾ ਸਪੇਸ ਦਾ ਕੋਈ ਖੇਤਰ, ਜੋ ਕੁਦਰਤ ਵਿੱਚ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੋਵੇ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦਾ, ਸਭ ਤੋਂ ਜਿਆਦਾ ਸਖਤ ਸ਼ੁੱਧਤਾ ਦੇ ਨਿਯਮਾਂ ਵਿੱਚ ਪੜਿਆ ਜਾਂਦਾ ਹੈ। ਹਲਕੇ ਨਿਯਮਾਂ ਅੰਦਰ, ਪੂਰੇ ਦੇ ਪੂਰੇ ਬ੍ਰਹਿਮੰਡ ਅੰਦਰ ਕੁੱਝ ਵੀ ਜਾਂ ਕਦੇ ਵੀ ਇੱਨਬਿੰਨ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਵਿੱਚ ਸ਼ੁੱਧਤਾ ਨਾਲ ਨਹੀਂ ਪਾਇਆ ਗਿਆ ।[47][48]

ਭੌਤਿਕੀ ਵਿਸ਼ਲੇਸ਼ਣ ਦੇ ਮਕਸਦਾਂ ਵਾਸਤੇ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਧਾਰਨਾ ਬਣਾ ਲੈਣੀ ਅਕਸਰ ਕਾਫੀ ਅਸਾਨੀ-ਭਰੀ ਰਹਿੰਦੀ ਹੈ। ਅਜਿਹੀ ਇੱਕ ਧਾਰਨਾ ਅਪਣੇ ਸਪੱਸ਼ਟੀਕਰਨ ਲਈ ਯਤਨ ਅਤੇ ਗਲਤੀ ਉੱਤੇ ਭਰੋਸਾ ਕਰ ਸਕਦੀ ਹੈ। ਜੇਕਰ ਕੋਈ ਧਾਰਨਾ ਸਹੀ ਸਾਬਤ ਹੋ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਹ ਬਹੁਤ ਕੀਮਤੀ ਹੋ ਸਕਦੀ ਹੈ ਅਤੇ ਲਾਭਕਾਰੀ ਵੀ ਹੋ ਸਕਦੀ ਹੈ ਕਿਉਂਕਿ ਇਹ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੀ ਥਿਊਰੀ ਨੂੰ ਉਪਲਬਧ ਕਰਵਾਉਂਦੀ ਹੈ। ਸੰਤੁਲਨ ਧਾਰਨਾ ਦੇ ਤੱਤ ਅਜਿਹੇ ਹੁੰਦੇ ਹਨ ਕਿ ਕੋਈ ਸਿਸਟਮ ਕਿਸੇ ਅਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਲੰਬੇ ਸਮੇਂ ਉੱਤੇ ਤਬਦੀਲ ਹੁੰਦਾ ਨਾ ਪਾਇਆ ਜਾਵੇ, ਅਤੇ ਕਿਸੇ ਸਿਸਟਮ ਅੰਦਰ ਇੰਨੇ ਜਿਆਦਾ ਕਣ ਹੋਣ, ਕਿ ਇਸਦੀ ਵਿਸ਼ੇਸ਼ ਫਿਤਰਤ ਪੂਰੀ ਤਰਾਂ ਅੱਖੋਂ ਓਹਲੇ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੋਵੇ । ਅਜਿਹੀ ਕਿਸੇ ਸੰਤੁਲਨ ਧਾਰਨਾ ਅਧੀਨ, ਆਮਤੌਰ ਤੇ, ਕੋਈ ਵੀ ਸੂਖਮ ਤੌਰ ਤੇ ਪਛਾਣਨਯੋਗ ਉਤ੍ਰਾਓ-ਚੜਾਓ ਨਹੀਂ ਹੁੰਦੇ । ਕ੍ਰਿਟੀਕਲ ਅਵਸਥਾਵਾਂ ਦਾ ਮਾਮਲਾ ਇੱਕ ਅਲੱਗ ਮਾਮਲਾ ਹੈ ਜੋ ਕ੍ਰਿਟੀਕਲ ਓਪੇਲਸੈਂਸ (ਅਪਾਤਕਲੀਨ ਰੰਗ ਤਬਦੀਲੀ) ਦੇ ਵਰਤਾਰੇ ਨੂੰ ਨੰਗੀ ਅੱਖ ਸਾਹਮਣੇ ਦਿਖਾਉਂਦਾ ਹੈ। ਕ੍ਰਿਟੀਕਲ ਅਵਸਥਾਵਾਂ ਦੇ ਪ੍ਰਯੋਗਸ਼ਾਲਾਤਾਮਿਕ ਅਧਿਐਨ ਵਾਸਤੇ, ਛੂਟ ਦੇ ਤੌਰ ਤੇ ਲੰਬੇ ਨਿਰੀਖਣ ਵਕਤਾਂ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ।

ਸਾਰੇ ਮਾਮਿਲਆਂ ਅੰਦਰ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਧਾਰਨਾ, ਇੱਕ ਵਾਰ ਬਣਾ ਲੈਣ ਤੋਂ ਬਾਦ, ਇੱਕ ਨਤੀਜਾ ਦਰਸਾਉਂਦੀ ਹੈ ਕਿ ਕੋਈ ਵੀ ਮਸ਼ਹੂਰ ਉਮੀਦਵਾਰ "ਉਤਰਾਓ-ਚੜਾਓ" ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਨਹੀਂ ਬਦਲਦਾ ।

ਅਜਿਹਾ ਅਸਾਨੀ ਨਾਲ ਵਾਪਰ ਸਕਦਾ ਹੈ ਕਿ ਕੋਈ ਭੌਤਿਕੀ ਸਿਸਟਮ ਅਜਿਹੀਆਂ ਅੰਦਰੂਨੀ ਅਸਥੂਲਾਤਮਿਕ ਤਬਦੀਲੀਆਂ ਦਿਖਾਉਂਦੇ ਹੈ ਜੋ ਐਨਟ੍ਰੌਪੀ ਦੀ ਸਥਿਰਤਾ ਦੀ ਧਾਰਨਾ ਨੂੰ ਅਪ੍ਰਮਾਣਿਕ ਕਰਨ ਲਈ ਕਾਫੀ ਤੇਜ਼ ਹੁੰਦੀਆਂ ਹਨ। ਜਾਂ ਇਹ ਕਿ ਕੋਈ ਭੌਤਿਕੀ ਸਿਸਟਮ ਅਜਿਹੇ ਕੁੱਝ ਕਣ ਹੀ ਰੱਖਦਾ ਹੈ ਕਿ ਨਿਰੀਖਤ ਉਤ੍ਰਾਵਾਂ-ਚੜਾਵਾਂ ਅੰਦਰ ਖਾਸ ਫਿਤਰਤ ਹੀ ਪ੍ਰਗਟ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਸੰਤੁਲਨ ਦੀ ਧਾਰਨਾ ਰੱਦ ਕਰਨੀ ਹੁੰਦੀ ਹੈ। ਗੈਰ-ਸੰਤੁਲਨ ਅਵਸਥਾਵਾਂ ਵਾਸਤੇ ਐਨਟ੍ਰੌਪੀ ਦੀ ਕੋਈ ਵੀ ਗੈਰ-ਯੋਗ (ਅਯੋਗ) ਸਰਵ-ਸਧਾਰਨ ਪਰਿਭਾਸ਼ਾ ਨਹੀਂ ਹੈ।[49]

ਅਜਿਹੇ ਅੱਧ-ਵਿਚਾਲੇ ਦੇ ਮਾਮਲੇ ਵੀ ਹੁੰਦੇ ਹਨ, ਜਿਹਨਾਂ ਵਿੱਚ ਸਥਾਨਿਕ (ਲੋਕਲ) ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਧਾਰਨਾ ਇੱਕ ਬਹੁਤ ਚੰਗੀ ਲੱਗਪਗਤਾ ਹੁੰਦੀ ਹੈ,[50][51][52][53] ਪਰ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਕਹੀਏ ਤਾਂ ਇਹ ਅਜੇ ਵੀ ਇੱਕ ਸੰਖੇਪਤਾ ਹੀ ਹੁੰਦੀ ਹੈ, ਕੋਈ ਸਿਧਾਂਤਿਕ ਤੌਰ ਤੇ ਆਦਰਸ਼ ਚੀਜ਼ ਨਹੀਂ ਹੁੰਦੀ । ਆਮਤੌਰ ਤੇ ਗੈਰ-ਸੰਤੁਲਨ ਪ੍ਰਸਥਿਤੀਆਂ ਵਾਸਤੇ, ਪ੍ਰੰਪ੍ਰਿਕ ਤੌਰ ਤੇ ਐਨਟ੍ਰੌਪੀ ਕਹੀਆਂ ਜਾਣ ਵਾਲ਼ੀਆਂ ਹੋਰ ਮਾਤਰਾਵਾਂ ਦੀਆਂ ਆਂਕੜਾਤਮਿਕ ਮਕੈਨਿਕਸ ਪਰਿਭਾਸ਼ਾਵਾਂ ਤੇ ਵਿਚਾਰ ਕਰਨਾ ਲਾਭਕਾਰੀ ਹੋ ਸਕਦਾ ਹੈ, ਪਰ ਇਹਨਾਂ ਬਾਰੇ ਦੂਜੇ ਨਿਯਮ ਲਈ ਚੰਗੀ ਤਰੀ ਪਰਿਭਾਸ਼ਿਤ ਹੋਣ ਵਾਲ਼ੀ ਥਰਮੋਡਾਇਨਾਮਿਕ ਐਨਟ੍ਰੌਪੀ ਨਾਲ ਸਮਾਨਤਾ ਦੀ ਗਲਤਫਹਿਮੀ ਨਹੀਂ ਕਰਨੀ ਚਾਹੀਦੀ । ਇਹ ਹੋਰ ਮਾਤਰਾਵਾਂ ਸੱਚਮੁੱਚ ਹੀ ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਨਾਲ ਸਬੰਧ ਰੱਖਦੀਆਂ ਹਨ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਨਾਲ ਸਬੰਧਤ ਨਹੀਂ ਹੁੰਦੀਆਂ, ਜੋ ਦੂਜੇ ਨਿਯਮ ਦਾ ਮੁਢਲਾ ਖੇਤਰ (ਦਾਇਰਾ) ਹੈ।

ਅਸਥੂਲ ਤੌਰ ਤੇ ਔਬਜ਼ਰਵੇਬਲ (ਨਿਰੀਖਣਯੋਗ) ਉਤ੍ਰਾਵਾਂ-ਚੜਾਵਾਂ ਦੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਇਸ ਲੇਖ ਦੇ ਸਕੋਪ (ਗੁੰਜਾਇਸ਼) ਤੋਂ ਪਰੇ ਦੀ ਭੌਤਿਕ ਵਿਗਿਆਨ ਹੈ।

ਸਮੇਂ ਦਾ ਤੀਰ

ਫਰਮਾ:Further information ਫਰਮਾ:See also ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਅਜਿਹਾ ਭੌਤਿਕੀ ਨਿਯਮ ਹੈ ਜੋ ਸਮੇਂ ਦੀ ਉਲਟ ਦਿਸ਼ਾ ਪ੍ਰਤਿ ਸਮਿੱਟ੍ਰਿਕ ਨਹੀਂ ਹੁੰਦਾ ।

ਦੂਜਾ ਨਿਯਮ ਸਮੇਂ ਵਿੱਚ ਅੱਗੇ ਅਤੇ ਪਿੱਛੇ ਗਤੀਸ਼ੀਲ ਹੋਣ ਦਰਮਿਆਨ ਅੰਤਰ ਦੀ ਇੱਕ ਵਿਆਖਿਆ ਕਰਨ ਵਾਸਤੇ ਪ੍ਰਸਤਾਵਿਤ ਕੀਤਾ ਜਾਂਦਾ ਰਿਹਾ ਹੈ, ਜਿਵੇਂ ਕਿ ਪ੍ਰਭਾਵ ਤੋਂ ਪਹਿਲਾਂ ਕਾਰਨ ਕਿਉਂ ਹੁੰਦਾ ਹੈ (ਸਮੇਂ ਦਾ ਕਾਰਣਾਤਮਿਕ ਤੀਰ)[54]

ਅਰਥ੍ਰ ਸਟੈਨਲੇ ਐਡਿੰਗਟਨ

ਸਮੇਂ ਦਾ ਤੀਰ, ਜਾਂ ਟਾਈਮ ਦਾ ਐਰੋ, ਸਮੇਂ ਦੀ ਇੱਕ-ਪਾਸੜ ਦਿਸ਼ਾ ਜਾਂ ਅਸਮਰੂਪਤਾ ਨੂੰ ਸ਼ਾਮਿਲ ਕਰਨ ਵਾਲ਼ਾ ਬ੍ਰਿਟਿਸ਼ ਖਗੋਲਸ਼ਾਸਤਰੀ ਅਰਥ੍ਰ ਐਡਿੰਗਟਨ ਦੁਆਰਾ 1927 ਵਿੱਚ ਵਿਕਸਿਤ ਕੀਤਾ ਗਿਆ ਇੱਕ ਸੰਕਲਪ ਹੈ। ਇਹ ਦਿਸ਼ਾ, ਐਡਿੰਗਟਨ ਅਨੁਸਾਰ, ਐਟਮਾਂ, ਮੌਲੀਕਿਊਲਾਂ, ਅਤੇ ਵਸਤੂਆਂ ਦੀ ਬਣਤਰ ਦਾ ਅਧਿਐਨ ਕਰਕੇ ਨਿਰਧਾਰਿਤ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਸੰਸਾਰ ਦੇ ਇੱਕ ਚਾਰ-ਅਯਾਮੀ ਸਾਪੇਖਿਕ ਨਕਸ਼ੇ (ਪੇਪਰ ਦਾ ਇੱਕ ਠੋਸ ਬਲੌਕ) ਉੱਤੇ ਵਾਹੀ ਜਾ ਸਕਦੀ ਹੈ।[55]

ਸੂਖਮ ਪੱਧਰ ਉੱਤੇ ਭੌਤਿਕੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਜਾਂ ਤਾਂ ਪੂਰੀ ਤਰਾਂ ਨਾਲ ਜਾਂ ਜਿਆਦਾਤਰ ਤੌਰ ਤੇ ਸਮਾਂ-ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਮੰਨੀਆਂ ਜਾਂਦੀਆਂ ਹਨ: ਜੇਕਰ ਸਮੇਂ ਦੀ ਦਿਸ਼ਾ ਉਲਟਾ ਦਿੱਤੀ ਜਾਵੇ, ਤਾਂ ਉਹਨਾਂ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੀਆਂ ਸਿਧਾਂਤਿਕ ਸਟੇਟਮੈਂਟਾਂ (ਸਮੀਕਰਨਾਂ ਆਦਿ) ਸੱਚ ਰਹਿੰਦੀਆਂ ਹੋਣੀਆਂ ਚਾਹੀਦੀਆਂ ਹਨ। ਫੇਰ ਵੀ ਮੈਕ੍ਰੋਸਕੋਪਿਕ ਪੱਧਰ ਉੱਤੇ ਇਹ ਅਕਸਰ ਦਿਸਦਾ ਹੈ ਕਿ ਇਹ ਮਾਮਲਾ ਇੰਝ ਨਹੀਂ ਹੈ: ਟਾਈਮ ਦਾ ਇੱਕ ਸਪੱਸ਼ਟ ਪ੍ਰਵਾਹ (ਦਿਸ਼ਾ) ਹੁੰਦਾ ਹੈ।

ਨਾ-ਪਲਟਣਯੋਗਤਾ

ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਅੰਦਰ ਗੈਰ-ਪਲਟਣਯੋਗਤਾ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨਾਂ ਦੇ ਅਸਮਰੂਪ ਲੱਛਣ ਦਾ ਇੱਕ ਨਤੀਜਾ ਹਨ, ਅਤੇ ਵਸਤੂਆਂ ਦੀਆਂ ਕਿਸੇ ਅੰਦਰੂਨੀ ਤੌਰ ਤੇ ਸੂਖਮ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਦਾ ਲੱਛਣ ਦਾ ਨਤੀਜਾ ਨਹੀਂ ਹੁੰਦੀਆਂ । ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਹਿੱਸਾ ਲੈਣ ਵਾਲੀਆਂ ਚੀਜ਼ਾਂ ਉੱਤੇ ਥੋਪੀਆਂ ਅਸਥੂਲ ਬਾਹਰੀ ਦਖਲ-ਅੰਦਾਜੀਆਂ ਹੁੰਦੇ ਹਨ, ਜੋ ਉਹਨਾਂ ਦੀਆਂ ਅੰਦਰੂਨੀ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਤੋਂ ਨਹੀਂ ਬਣਾਏ ਗਏ ਹੁੰਦੇ । ਇਸ ਨੂੰ ਪਛਾਣ ਲੈਣ ਦੀ ਅਸਫਲਤਾ ਤੋਂ ਪ੍ਰਸਿੱਧ ਪਹੇਲੀਆਂ ਪੈਦਾ ਹੁੰਦੀਆਂ ਰਹਿੰਦੀਆਂ ਹਨ।

ਲੋਸ਼ਮਿਡਟ ਦੀ ਪਹੇਲੀ

ਫਰਮਾ:Main article ਲੋਸ਼ਮਿਡਟ ਦੀ ਪਹੇਲੀ, ਜਿਸਨੂੰ ਪਲਟਣਯੋਗਤਾ ਪਹੇਲੀ ਦੇ ਨਾਮ ਨਾਲ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਇਹ ਇਤਰਾਜ਼ ਹੈ ਕਿ ਕਿਸੇ ਅਸਥੂਲ ਸਿਸਟਮ ਦੀ ਸੂਖਮ ਉਤਪਤੀ ਨੂੰ ਦਰਸਾਉਣ ਵਾਲੇ ਸਮਾਂ-ਸਮਰੂਪ ਡਾਇਨਾਮਿਕਸ ਤੋਂ ਕੋਈ ਗੈਰ-ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਬਣਾਉਣੀ ਸੰਭਵ ਨਹੀਂ ਹੋਣੀ ਚਾਹੀਦੀ ।

ਸ਼੍ਰੋਡਿੰਜਰ ਦੀ ਰਾਏ ਵਿੱਚ, "ਹੁਣ ਇਹ ਚੰਗੀ ਤਰਾਂ ਸਪੱਸ਼ਟ ਹੋ ਗਿਆ ਹੈ ਕਿ ਐਨਟ੍ਰੌਪੀ ਦੇ ਨਿਯਮ ਨੂੰ ਤੁਹਾਨੂੰ ਕਿਸ ਅੰਦਾਜ ਵਿੱਚ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕਰਨਾ ਪਵੇਗਾ- ਜਾਂ ਇਸਤਰਾਂ ਕਰਨ ਵਾਸਤੇ, ਹੋਰ ਬਾਕੀ ਦੀਆਂ ਸਾਰੀਆਂ ਸਟੇਟਮੈਂਟਾਂ ਨੂੰ ਕਿਵੇਂ ਪੁਨਰ-ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕਰਨਾ ਚਾਹੀਦਾ ਹੈ– ਤਾਂ ਜੋ ਇਹ ਪਲਟਣਯੋਗ ਮੌਡਲਾਂ ਤੋਂ ਪ੍ਰਾਪਤ ਹੋਣਯੋਗ ਹੋ ਸਕਣ । ਤੁਹਾਨੂੰ ਕਿਸੇ ਇੱਕ ਆਇਸੋਲੇਟਡ ਸਿਸਟਮ ਬਾਰੇ ਗੱਲ ਨਹੀਂ ਕਰਨੀ ਚਾਹੀਦੀ ਸਗੋਂ ਘੱਟੋ-ਘੱਟ ਦੋ ਸਿਸਟਮਾਂ ਦੀ ਗੱਲ ਕਰਨੀ ਚਾਹੀਦੀ ਹੈ, ਜੋ ਫਿਲਹਾਲ ਤੁਸੀਂ ਬਾਕੀ ਦੇ ਸੰਸਾਰ ਤੋਂ ਲੈ ਸਕਦੇ ਹੋ, ਪਰ ਹਮੇਸ਼ਾਂ ਹੀ ਇੱਕ-ਦੂਜੇ ਤੋਂ ਨਹੀਂ ਲੈ ਸਕਦੇ।"[56]

ਦੋ ਸਿਸਟਮ ਇੱਕ-ਦੂਜੇ ਤੋਂ ਕੰਧ ਰਾਹੀਂ ਉਦੋਂ ਤੱਕ ਆਇਸੋਲੇਟ ਕੀਤੇ ਰਹਿੰਦੇ ਹਨ, ਜਦੋਂ ਤੱਕ ਇਸਨੂੰ ਕਿਸੇ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਰਾਹੀਂ ਹਟਾ ਨਹੀਂ ਦਿੱਤਾ ਜਾਂਦਾ, ਜਿਵੇਂ ਨਿਯਮ ਵਿੱਚ (ਕਲਪਿਤ) ਉਲੇਖ ਕੀਤਾ ਗਿਆ ਹੈ। ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਬਾਹਰੀ ਤੌਰ ਤੇ ਥੋਪਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਸਿਸਟਮਾਂ ਦੇ ਰਚਣਹਾਰਿਆਂ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਕਰਨ ਵਾਲ਼ੇ ਪਲਟਣਯੋਗ ਸੂਖਮ ਡਾਇਨੈਮੀਕਲ ਨਿਯਮਾਂ ਪ੍ਰਤਿ ਨਹੀਂ ਹੁੰਦੇ । ਇਹ ਗੈਰ-ਪਲਟਣਯੋਗਤਾ ਦਾ ਕਾਰਣ ਹੈ। ਇਸ ਵਰਤਮਾਨ ਲੇਖ ਅੰਦਰ ਨਿਯਮ ਦਾ ਬਿਆਨ (ਕਥਨ ਜਾਂ ਸਟੇਟਮੈਂਟ) ਸ਼੍ਰੋਡਿੰਜਰ ਦੀ ਰਾਏ ਦੇ ਅਨੁਕੂਲ ਹੈ। ਕਾਰਣ-ਪ੍ਰਭਾਵ ਸਬੰਧ ਤਾਰਕਿਕ (ਲੌਜਿਕਲ) ਤੌਰ ਤੇ ਦੂਜੇ ਨਿਯਮ ਤੋਂ ਪਹਿਲਾਂ (ਬੁਨਿਆਦੀ ਤੌਰ ਤੇ) ਮੌਜੂਦ ਹੁੰਦਾ ਹੈ, ਇਸਤੋਂ ਬਣਾਇਆ ਨਹੀਂ ਗਿਆ ।

ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਥਿਊਰਮ

ਫਰਮਾ:Main article ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਥਿਊਰਮ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ ਕੁੱਝ ਸਿਸਟਮ, ਇੱਕ ਕਾਫੀ ਲੰਬੇ ਪਰ ਸੀਮਤ ਸਮੇਂ ਬਾਦ, ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ ਦੇ ਬਹੁਤ ਨੇੜੇ ਦੀ ਅਵਸਥਾ ਵੱਲ ਵਾਪਿਸ ਪਰਤ ਆਉਂਦੇ ਹਨ। ਪੋਆਇਨਕੇਅਰ ਰੀਅੱਕ੍ਰੈਂਸ (ਪੁਨਰਹੋਂਦ) ਸਮਾਂ ਪੁਨਰਹੋਂਦ ਤੱਕ ਬੀਤੇ ਸਮੇਂ ਦੀ ਲੰਬਾਈ ਹੁੰਦੀ ਹੈ (ਇਹ ਸਮਾੰ ਬਹੁਤ ਵਿਸ਼ਾਲ ਤੌਰ ਤੇ ਇੰਨਬਿੰਨ ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ ਅਤੇ ਜਰੂਰਤ ਜਿੰਨੀ ਨਜ਼ਦੀਕੀ ਦੇ ਦਰਜੇ ਉੱਤੇ ਨਿਰਭਰ ਹੋ ਸਕਦਾ ਹੈ)। ਨਤੀਜਾ ਕੁੱਝ ਪਾਬੰਧੀਆਂ ਅਧੀਨ ਆਓਸੋਲੇਟ ਕੀਤੇ ਹੋਏ ਮਕੈਨੀਕਲ ਸਿਸਟਮਾਂ ਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਸਾਰੇ ਕਣ ਜਰੂਰ ਹੀ ਕਿਸੇ ਨਿਸ਼ਚਿਤ (ਸੀਮਤ) ਵੌਲੀਊਮ (ਘਣਫ਼ਲ) ਪ੍ਰਤਿ ਹੱਦ ਵਿੱਚ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਥਿਊਰਮ ਨੂੰ ਸਾੰਝੇ ਤੌਰ ਤੇ ਐਰਗੌਡਿਕ ਥਿਊਰੀ, ਡਾਇਨੈਮੀਕਲ ਸਿਸਟਮ ਅਤੇ ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਚਰਚਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।

ਇਸ ਥਿਊਰਮ ਦਾ ਨਾਮ ਹੈਨਰੀ ਪੋਆਇਨਕੇਅਰ ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਜਿਸਨੇ 1890[57] ਵਿੱਚ ਇਸਦੀ ਚਰਚਾ ਕੀਤੀ ਸੀ ਅਤੇ 1919[58] ਵਿੱਚ ਨਾਪ ਥਿਊਰੀ ਵਰਤਦੇ ਹੋਏ ਕੰਸਟੈਂਟਿਨ ਕੈਰਾਥਿਓਡੋਰੀ ਦੁਆਰਾ ਸਾਬਤ ਕੀਤੀ ਗਈ ਸੀ।

ਪੋਆੀਨਕੇਅਰ ਰੀਅੱਕ੍ਰੈਂਸ ਥਿਊਰਮ ਕਿਸੇ ਆਓਸੋਲੇਟ ਕੀਤੇ ਗਏ ਭੌਤਿਕੀ ਸਿਸਟਮ ਦੇ ਇੱਕ ਸਿਧਾਂਤਿਕ ਸੂਖਮ ਵੇਰਵੇ ਤੇ ਵਿਚਾਰ ਕਰਦੀ ਹੈ। ਇਸਨੂੰ ਓਦੋਂ ਕਿਸੇ ਥਰਮੋਡਾਇਨਾਮਿਕਲ ਸਿਸਟਮ ਦੇ ਕਿਸੇ ਮਾਡਲ ਦੇ ਤੌਰ ਤੇ ਵੀ ਵਿਚਾਰਿਆ ਜਾ ਸਕਦਾ ਹੈ ਜਦੋਂ ਕੋਈ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਕਿਸੇ ਅੰਦਰੂਨੀ ਕੰਧ ਨੂੰ ਹਟਾ ਦਿੰਦਾ ਹੈ। ਕਿਸੇ ਕਾਫੀ ਲੰਬੇ ਸਮੇਂ ਤੋਂ ਬਾਦ, ਸਿਸਟਮ, ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ ਦੇ ਬਹੁਤ ਨੇੜੇ ਦੀ ਇੱਕ ਸੂਖਮ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਅਵਸਥਾ ਤੱਕ ਵਾਪਿਸ ਮੁੜ ਆਵੇਗਾ । ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਟਾਈਮ ਵਾਪਿਸੀ ਤੱਕ ਦੇ ਬੀਤੇ ਸਮੇਂ ਨੂੰ ਕਹਿੰਦੇ ਹਨ। ਇਹ ਬਹੁਤ ਲੰਬਾ ਹੁੰਦਾ ਹੈ, ਤੇ ਬ੍ਰਹਿਮੰਡ ਦੀ ਉਮਰ ਤੋਂ ਵੀ ਜਿਆਦਾ ਲੰਬਾ ਹੋਣ ਦੀ ਸੰਭਾਵਨਾ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਇਹ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਦੁਆਰਾ ਹਟਾਈ ਗਈ ਕੰਧ ਦੇ ਰੇਖਾਗਣਿਤ ਉੱਤੇ ਸੰਵੇਦਨਸ਼ੀਲਤਾ ਨਾਲ ਨਿਤਭਰ ਕਰਦਾ ਹੈ। ਪੁਨਰਹੋਂਦ ਥਿਊਰਮ ਨੂੰ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੇ ਵਿਰੋਧ ਦੇ ਰੂਪ ਵਿੱਚ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਹੋਰ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ, ਫੇਰ ਵੀ, ਇਹ ਸਧਾਰਨ ਤੌਰ ਤੇ ਦੋ ਸਿਸਟਮਾਂ ਦਰਮਿਆਨ ਕਿਸੇ ਕੰਧ ਦੇ ਹਟਾਉਣ ਕਾਰਨ ਰਚੇ ਕਿਸੇ ਆਇਸੋਲੇਟ ਕੀਤੇ ਗਏ ਸਿਸਟਮ ਅੰਦਰ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦਾ ਇੱਕ ਸੂਖਮ ਆਦਰਸ਼ (ਮਾਡਲ) ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਖਾਸ ਥਰਮੋਡਾਇਨਾਮਿਕਲ ਸਿਸਟਮ ਵਾਸਤੇ, ਪੁਨਰਹੋਂਦ ਦਾ ਸਮਾਂ ਇੰਨਾ ਜਿਆਦਾ (ਬ੍ਰਹਿਮੰਡ ਦੇ ਜੀਵਨਕਾਲ ਤੋਂ ਬਹੁਤ ਬਹੁਤ ਜਿਆਦਾ ਲੰਬਾ) ਹੁੰਦਾ ਹੈ ਕਿ, ਸਾਰੇ ਅਮਲੀ ਮਕਸਦਾਂ ਲਈ, ਪੁਨਰਹੋਂਦ ਨੂੰ ਦੇਖਿਆ ਹੀ ਨਹੀਂ ਜਾ ਸਕਦਾ । ਘੱਟੋ-ਘੱਟ ਇਹ ਕਲਪਨਾ ਦੀ ਇੱਛਾ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ ਕਿ ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਲਈ ਉਡੀਕ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ, ਅਤੇ ਫੇਰ ਕੰਧ ਨੂੰ ਦੁਬਾਰਾ ਵਾਪਿਸ ਪਾਇਆ ਜਾ ਸਕਦਾ ਹੈ ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਰਾਹੀਂ ਹਟਾ ਦਿੱਤੀ ਗਈ ਸੀ। ਫੇਰ ਇਹ ਸਾਫ ਸਾਬਤ ਹੋ ਜਾਂਦਾ ਹੈ ਕਿ ਨਾ-ਪਲਟਣਯੋਗਤਾ ਦਿ ਦਿੱਖ ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਦੇ ਗੈਰ-ਅਨੁਮਾਨਯੋਗ ਕਥਨ ਕਾਰਣ ਹੁੰਦੀ ਹੈ ਜਿਸ ਵਿੱਚ ਸਿਰਫ ਇਹ ਦਿੱਤਾ ਗਿਆ ਹੁੰਦਾ ਹੈ ਕਿ ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਅਵਸਥਾ ਸੀ, ਜਿਵੇਂ ਅਸਥੂਲ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਹੁੰਦਾ ਹੈ। ਚਾਹੇ ਕੋਈ ਇਸਦੀ ਉਡੀਕ ਕਰ ਸਕਦਾ ਹੈ, ਫੇਰ ਵੀ ਕਿਸੇ ਕੋਲ ਕੰਧ ਨੂੰ ਮੁੜ-ਰੱਖਣ ਦੇ ਸਹੀ ਪਲ ਨੂੰ ਚੁੱਕਣ ਦੀ ਵਿਵਹਾਰਿਕ (ਪ੍ਰੈਕਟੀਕਲ) ਸੰਭਾਵਨਾ ਨਹੀਂ ਹੁੰਦੀ । ਪੋਆਇਨਕੇਅਰ ਪੁਨਰਹੋਂਦ ਥਿਊਰਮ ਲੋਸ਼ਮਿਡਟ ਪਹੇਲੀ ਪ੍ਰਤਿ ਇੱਕ ਹੱਲ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦੀ ਹੈ। ਜੇਕਰ ਕੋਈ ਆਇਸੋਲੇਟ ਕੀਤਾ ਗਿਆ ਸਿਸਟਮ, ਔਸਤਨ ਪੋਆਇਨਕੇਅਰ ਸਮੇਂ ਦੀ ਬਹੁਤ ਸਾਰੀ ਵਧ ਰਹੀ ਮਾਤਰਾ ਉੱਤੇ ਦੇਖਿਆ ਪਰਖਿਆ ਜਾਵੇ ਤਾਂ ਸਿਸਟਮ ਦਾ ਥਰਮੋਡਾਇਨਾਮਿਕ ਵਰਤਾਓ ਸਮਾਂ ਪਲਟਣ ਅਧੀਨ ਇਨਵੇਰੀਅੰਟ (ਸਥਿਰ) ਹੋ ਸਕਦਾ ਹੈ।

ਜੇਮਸ ਕਲ੍ਰਕ ਮੈਕਸਵੈੱਲ

ਮੈਕਸਵੈੱਲ ਦਾ ਦਾਨਵ

ਫਰਮਾ:Main article ਤਾਪ ਅਤੇ ਆਂਕੜਾ ਭੌਤਿਕ ਵਿਗਿਆਨ ਦੀ ਫਿਲਾਸਫੀ ਵਿੱਚ, ਮੈਕਸਵੈੱਲ ਦਾ ਦਾਨਵ, ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਜੇਮਜ਼ ਕਲ੍ਰਕ ਮੈਕਸਵੈੱਲ ਦੁਆਰਾ ਪੈਦਾ ਕੀਤਾ ਸੋਚ-ਪ੍ਰਯੋਗ ਹੈ ਜਿਸ ਵਿੱਚ ਉਸਨੇ ਸੁਝਾਇਆ ਕਿ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਕਾਲਪਨਿਕ ਤੌਰ ਤੇ ਕਿਵੇਂ ਉਲੰਘਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਸੋਚ-ਪ੍ਰਯੋਗ ਵਿੱਚ, ਇੱਕ ਦਾਨਵ ਗੈਸਾਂ ਦੇ ਦੋ ਚੈਂਬਰਾਂ ਦਰਮਿਆਨ ਇੱਕ ਛੋਟੇ ਢੱਕਣ ਨੂੰ ਨਿਯੰਤ੍ਰਿਤ ਕਰਦਾ ਹੈ। ਜਿਵੇਂ ਹੀ ਵਿਅਕਤੀਗਤ ਗੈਸ ਅਣੂ ਦਰਵਾਜੇ ਕੋਲ ਪਹੁੰਚਦੇ ਹਨ, ਦਾਨਵ ਤੇਜ਼ੀ ਨਾਲ ਢੱਕਣ ਨੂੰ ਖੋਲ ਕੇ ਬੰਦ ਕਰ ਦਿੰਦਾ ਹੈ ਤਾਂ ਜੋ ਉਹ ਧੀਮੇ ਅਣੂ ਇੱਕ ਚੈਂਬਰ ਵਿੱਚ ਦਾਖਲ ਹੋ ਜਾਣ ਅਤੇ ਤੇਜ਼ ਅਣੂ ਦੂਜੇ ਚੈਂਬਰ ਵਿੱਚ ਲੰਘ ਜਾਣ । ਕਿਉਂਕਿ ਤੇਜ਼ ਅਣੂ ਜਿਆਦਾ ਗਰਮ ਹੁੰਦੇ ਹਨ, ਇਸਲਈ ਦਾਨਵ ਦਾ ਵਰਤਾਓ ਇੱਕ ਚੈਂਬਰ ਨੂੰ ਗਰਮ ਕਰ ਦਿੰਦਾ ਹੈ ਅਤੇ ਦੂਜੇ ਨੂੰ ਠੰਡਾ, ਜਿਸ ਕਾਰਨ ਐਨਟ੍ਰੌਪੀ ਘਟਦੀ ਹੈ ਅਤੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਲੰਘਣਾ ਹੁੰਦੀ ਹੈ।

ਜੇਨਮਸ ਕਲ੍ਰਕ ਮੈਕਸਵੈੱਲ ਨੇ ਸੋਚਿਆ ਕਿ ਕਿਸੇ ਕੰਟੇਨਰ ਨੂੰ ਦੋ ਹਿੱਸਿਆਂ A ਅਤੇ B ਵਿੱਚ ਵੰਡਿਆ ਜਾਵੇ । ਦੋਵੇਂ ਹਿੱਸਿਆਂ ਨੂੰ ਇੱਕੋ ਜਿਹੇ ਤਾਪਮਾਨਾਂ ਉੱਤੇ ਇੱਕੋ ਹੀ ਗੈਸ ਨਾਲ ਭਰਿਆ ਜਾਂਦਾ ਹੈ ਅਤੇ ਇੱਕ ਦੂਜੇ ਦੇ ਨੇੜੇ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਇੱਕ ਕੰਧ ਦੁਆਰਾ ਵੱਖਰੇ ਹੁੰਦੇ ਹਨ। ਦੋਵੇਂ ਪਾਸਿਆੰ ਉੱਤੇ ਮੌਲੀਕਿਊਲਾਂ ਦਾ ਨਿਰੀਖਣ ਕਰਦਾ ਹੋਇਆ ਇੱਕ ਕਾਲਪਨਿਕ ਦਾਨਵ ਕੰਧ ਅੰਦਰ ਇੱਕ ਸੂਖਮ ਟ੍ਰੈਪਡੋਰ ਦੀ ਰਾਖੀ ਕਰਦਾ ਹੈ। ਜਦੋਂ ਕੋਈ ਔਸਤ ਤੋਂ ਜਿਆਦਾ ਤੇਜ਼ ਮੌਲਿਕਿਊਲ A ਤੋਂ ਨਿਕਲ ਕੇ ਟ੍ਰੈਪਡੋਰ ਤੱਕ ਪਹੁੰਚਦਾ ਹੈ, ਤਾਂ ਦਾਨਵ ਦਰਵਾਜ਼ਾ ਖੋਲ ਦਿੰਦਾ ਹੈ, ਅਤੇ ਮੌਲੀਕਿਊਲ A ਤੋਂ B ਹਿੱਸੇ ਵਿੱਚ ਉਡ ਕੇ ਪਹੁੰਚ ਜਾਂਦਾ ਹੈ। B ਅੰਦਰ ਮੌਲੀਕਿਊਲ ਦੀ ਔਸਤਨ ਸਪੀਡ ਵਧ ਜਾਵੇਗੀ ਜਦੋਂਕਿ A ਅੰਦਰ ਔਸਤਨ ਸਪੀਡ ਘਟ ਜਾਣੀ ਚਾਹੀਦੀ ਹੈ। ਕਿਉਂਕਿ ਔਸਤਨ ਮੋਲੀਕਿਊਲਰ ਸਪੀਡ ਤਾਪਮਾਨ ਨਾਲ ਸਬੰਧਤ ਹੁੰਦੀ ਹੈ, ਇਸਲਈ A ਦਾ ਤਾਪਮਾਨ ਘਟ ਜਾਂਦਾ ਹੈ ਅਤੇ B ਦਾ ਤਾਪਮਾਨ ਵਧ ਜਾਂਦਾ ਹੈ, ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਵਿਰੁੱਧ ਗੱਲ ਹੈ।

ਇਸ ਸਵਾਲ ਪ੍ਰਤਿ ਇੱਕ ਜਵਾਬ 1929 ਵਿੱਚ ਲੀਓ ਸਜ਼ਿਲ੍ਰਡ ਅਤੇ ਬਾਦ ਵਿੱਚ ਲੀਓਨ ਬ੍ਰਿਲੋਉਇਨ ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਸੀ। ਸਜ਼ਿਲ੍ਰਡ ਨੇ ਕਿਹਾ ਕਿ ਕੋਈ ਵਾਸਤਵਿਕ-ਜਿੰਦਗੀ ਵਾਲ਼ੇ ਮੈਕਸਵੈੱਲ ਦੇ ਦਾਨਵ ਨੂੰ ਕਿਸੇ ਤਰਾਂ ਨਾਲ ਮੌਲੀਕਿਊਲਰ ਸਪੀਡ ਨਾਪਣ ਦੀ ਜਰੂਰਤ ਪੈਣੀ ਚਾਹੀਦੀ ਹੈ, ਅਤੇ ਜਾਣਕਾਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਦੀ ਕ੍ਰਿਆ (ਕਾਰਜ) ਊਰਜਾ ਦੇ ਖਰਚ ਦੀ ਕੀਮਤ ਤੇ ਹੀ ਹੋਵੇਗੀ ।

ਮੈਕਸਵੈੱਲ ਦਾ ਦਾਨਵ A ਅਤੇ B ਦਰਮਿਆਨ ਕੰਧ ਦੀ ਪਰਮੀਅਬਿਲਟੀ ਨੂੰ ਵਾਰ ਵਾਰ ਤਬਦੀਲ ਕਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਇਸਲਈ ਇਹ ਕਿਸੇ ਸੂਖਮ ਪੈਮਾਨੇ ਉੱਤੇ ਥਰਮੋਡਾਇਨਾਮਿਕ ਓਪਰੇਸ਼ਨ ਕਰ ਰਿਹਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਇਹ ਕੇਵਲ ਸਧਾਰਨ ਤਤਕਾਲ ਜਾਂ ਕੁਦਰਤੀ ਅਸਥੂਲ (ਵਿਸ਼ਾਲ) ਥਰਮੋਡਾਇਨਾਮਿਕ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦਾ ਨਿਰੀਖਣ ਹੀ ਨਹੀਂ ਕਰਦਾ ।

ਕੋਓਟੇਸ਼ਨਾਂ

ਫਰਮਾ:Wikiquote ਫਰਮਾ:Quote

ਫਰਮਾ:Quote

ਫਰਮਾ:Quote

ਇਹ ਵੀ ਦੇਖੋ

ਫਰਮਾ:Colbegin

ਫਰਮਾ:Colend

ਹਵਾਲੇ

ਫਰਮਾ:Reflist

ਹਵਾਲਿਆਂ ਦੀ ਗ੍ਰੰਥ-ਸੂਚੀ

ਫਰਮਾ:Refbegin

  • Adkins, C.J. (1968/1983). Equilibrium Thermodynamics, (1st edition 1968), third edition 1983, Cambridge University Press, Cambridge UK, ISBN 0-521-25445-0.
  • Atkins, P.W., de Paula, J. (2006). Atkins' Physical Chemistry, eighth edition, W.H. Freeman, New York, ISBN 978-0-7167-8759-4.
  • Attard, P. (2012). Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications, Oxford University Press, Oxford UK, ISBN 978-0-19-966276-0.
  • Baierlein, R. (1999). Thermal Physics, Cambridge University Press, Cambridge UK, ISBN 0-521-59082-5.
  • Bailyn, M. (1994). A Survey of Thermodynamics, American Institute of Physics, New York, ISBN 0-88318-797-3.
  • Blundell, S.J., Blundell, K.M. (2006). Concepts in Thermal Physics, Oxford University Press, Oxford UK, ISBN 978-0-19-856769-1.
  • Boltzmann, L. (1896/1964). Lectures on Gas Theory, translated by S.G. Brush, University of California Press, Berkeley.
  • Borgnakke, C., Sonntag., R.E. (2009). Fundamentals of Thermodynamics, seventh edition, Wiley, ISBN 978-0-470-04192-5.
  • Buchdahl, H.A. (1966). The Concepts of Classical Thermodynamics, Cambridge University Press, Cambridge UK.
  • Bridgman, P.W. (1943). The Nature of Thermodynamics, Harvard University Press, Cambridge MA.
  • Callen, H.B. (1960/1985). Thermodynamics and an Introduction to Thermostatistics, (1st edition 1960) 2nd edition 1985, Wiley, New York, ISBN 0-471-86256-8.
  • Čápek, V., Sheehan, D.P. (2005). Challenges to the Second Law of Thermodynamics: Theory and Experiment, Springer, Dordrecht, ISBN 1-4020-3015-0.
  • ਫਰਮਾ:Cite journal. A translation may be found here. Also a mostly reliable translation is to be found at Kestin, J. (1976). The Second Law of Thermodynamics, Dowden, Hutchinson & Ross, Stroudsburg PA.
  • Carnot, S. (1824/1986). Reflections on the motive power of fire, Manchester University Press, Manchester UK, ISBN 0-7190-1741-6. Also here.
  • Chapman, S., Cowling, T.G. (1939/1970). The Mathematical Theory of Non-uniform gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, third edition 1970, Cambridge University Press, London.
  • ਫਰਮਾ:Cite journal Translated into English: ਫਰਮਾ:Cite journal
  • ਫਰਮਾ:Cite journal Translated into English: ਫਰਮਾ:Cite journal Reprinted in: ਫਰਮਾ:Cite book
  • Denbigh, K. (1954/1981). The Principles of Chemical Equilibrium. With Applications in Chemistry and Chemical Engineering, fourth edition, Cambridge University Press, Cambridge UK, ISBN 0-521-23682-7.
  • Eu, B.C. (2002). Generalized Thermodynamics. The Thermodynamics of Irreversible Processes and Generalized Hydrodynamics, Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-0788-4.
  • Gibbs, J.W. (1876/1878). On the equilibrium of heterogeneous substances, Trans. Conn. Acad., 3: 108-248, 343-524, reprinted in The Collected Works of J. Willard Gibbs, Ph.D, LL. D., edited by W.R. Longley, R.G. Van Name, Longmans, Green & Co., New York, 1928, volume 1, pp. 55–353.
  • Griem, H.R. (2005). Principles of Plasma Spectroscopy (Cambridge Monographs on Plasma Physics), Cambridge University Press, New York ISBN 0-521-61941-6.
  • Glansdorff, P., Prigogine, I. (1971). Thermodynamic Theory of Structure, Stability, and Fluctuations, Wiley-Interscience, London, 1971, ISBN 0-471-30280-5.
  • Grandy, W.T., Jr (2008). Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press. ISBN 978-0-19-954617-6.
  • Greven, A., Keller, G., Warnecke (editors) (2003). Entropy, Princeton University Press, Princeton NJ, ISBN 0-691-11338-6.
  • Guggenheim, E.A. (1949). 'Statistical basis of thermodynamics', Research, 2: 450–454.
  • Guggenheim, E.A. (1967). Thermodynamics. An Advanced Treatment for Chemists and Physicists, fifth revised edition, North Holland, Amsterdam.
  • Gyarmati, I. (1967/1970) Non-equilibrium Thermodynamics. Field Theory and Variational Principles, translated by E. Gyarmati and W.F. Heinz, Springer, New York.
  • Kittel, C., Kroemer, H. (1969/1980). Thermal Physics, second edition, Freeman, San Francisco CA, ISBN 0-7167-1088-9.
  • Kondepudi, D., Prigogine, I. (1998). Modern Thermodynamics: From Heat Engines to Dissipative Structures, John Wiley & Sons, Chichester, ISBN 0-471-97393-9.
  • Lebon, G., Jou, D., Casas-Vázquez, J. (2008). Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers, Springer-Verlag, Berlin, ISBN 978-3-540-74252-4.
  • ਫਰਮਾ:Cite journal
  • Lieb, E.H., Yngvason, J. (2003). The Entropy of Classical Thermodynamics, pp. 147–195, Chapter 8 of Entropy, Greven, A., Keller, G., Warnecke (editors) (2003).
  • ਫਰਮਾ:Cite book
  • ਫਰਮਾ:Cite journal
  • Müller, I. (1985). Thermodynamics, Pitman, London, ISBN 0-273-08577-8.
  • Müller, I. (2003). Entropy in Nonequilibrium, pp. 79–109, Chapter 5 of Entropy, Greven, A., Keller, G., Warnecke (editors) (2003).
  • Münster, A. (1970), Classical Thermodynamics, translated by E.S. Halberstadt, Wiley–Interscience, London, ISBN 0-471-62430-6.
  • Pippard, A.B. (1957/1966). Elements of Classical Thermodynamics for Advanced Students of Physics, original publication 1957, reprint 1966, Cambridge University Press, Cambridge UK.
  • Planck, M. (1897/1903). Treatise on Thermodynamics, translated by A. Ogg, Longmans Green, London, p. 100.
  • Planck. M. (1914). The Theory of Heat Radiation, a translation by Masius, M. of the second German edition, P. Blakiston's Son & Co., Philadelphia.
  • Planck, M. (1926). Über die Begründung des zweiten Hauptsatzes der Thermodynamik, Sitzungsberichte der Preussischen Akademie der Wissenschaften: Physikalisch-mathematische Klasse: 453–463.
  • Quinn, T.J. (1983). Temperature, Academic Press, London, ISBN 0-12-569680-9.
  • ਫਰਮਾ:Cite book
  • Roberts, J.K., Miller, A.R. (1928/1960). Heat and Thermodynamics, (first edition 1928), fifth edition, Blackie & Son Limited, Glasgow.
  • Schrödinger, E. (1950). Irreversibility, Proc. Roy. Irish Acad., A53: 189–195.
  • ter Haar, D., Wergeland, H. (1966). Elements of Thermodynamics, Addison-Wesley Publishing, Reading MA.
  • ਫਰਮਾ:Cite journal Also published in ਫਰਮਾ:Cite journal
  • Thomson, W. (1852). On the universal tendency in nature to the dissipation of mechanical energy Philosophical Magazine, Ser. 4, p. 304.
  • Tisza, L. (1966). Generalized Thermodynamics, M.I.T Press, Cambridge MA.
  • Truesdell, C. (1980). The Tragicomical History of Thermodynamics 1822–1854, Springer, New York, ISBN 0-387-90403-4.
  • Uffink, J. (2001). Bluff your way in the second law of thermodynamics, Stud. Hist. Phil. Mod. Phys., 32(3): 305–394.
  • Uffink, J. (2003). Irreversibility and the Second Law of Thermodynamics, Chapter 7 of Entropy, Greven, A., Keller, G., Warnecke (editors) (2003), Princeton University Press, Princeton NJ, ISBN 0-691-11338-6.
  • Uhlenbeck, G.E., Ford, G.W. (1963). Lectures in Statistical Mechanics, American Mathematical Society, Providence RI.
  • Zemansky, M.W. (1968). Heat and Thermodynamics. An Intermediate Textbook, fifth edition, McGraw-Hill Book Company, New York.

ਹੋਰ ਲਿਖਤਾਂ

ਬਾਹਰੀ ਲਿੰਕ

  1. Planck, M. (1897/1903), pp. 40–41.
  2. Munster A. (1970), pp. 8–9, 50–51.
  3. ਫਰਮਾ:Harvnb
  4. Planck, M. (1897/1903), pp. 79–107.
  5. Bailyn, M. (1994), Section 71, pp. 113–154.
  6. Bailyn, M. (1994), p. 120.
  7. Adkins, C.J. (1968/1983), p. 75.
  8. 8.0 8.1 8.2 Münster, A. (1970), p. 45.
  9. ਫਰਮਾ:Cite book
  10. Zemansky, M.W. (1968), pp. 207–209.
  11. Quinn, T.J. (1983), p. 8.
  12. ਫਰਮਾ:Cite web
  13. Carnot, S. (1824/1986).
  14. Truesdell, C. (1980), Chapter 5.
  15. Adkins, C.J. (1968/1983), pp. 56–58.
  16. Münster, A. (1970), p. 11.
  17. Kondepudi, D., Prigogine, I. (1998), pp.67–75.
  18. Lebon, G., Jou, D., Casas-Vázquez, J. (2008), p. 10.
  19. Eu, B.C. (2002), pp. 32–35.
  20. Planck, M. (1897/1903), p. 86.
  21. Roberts, J.K., Miller, A.R. (1928/1960), p. 319.
  22. ter Haar, D., Wergeland, H. (1966), p. 17.
  23. Pippard, A.B. (1957/1966), p. 30.
  24. Čápek, V., Sheehan, D.P. (2005), p. 3
  25. Planck, M. (1897/1903), p. 100.
  26. Planck, M. (1926), p. 463, translation by Uffink, J. (2003), p. 131.
  27. Roberts, J.K., Miller, A.R. (1928/1960), p. 382. ਇਹ ਸੋਰਸ (ਸੋਮਾ) ਅੰਸ਼ਿਕ ਤੌਰ ਤੇ ਪਲੈਂਕ ਦੀ ਸਟੇਟਮੈਂਟ ਤੋਂ ਮੂਲ ਤੌਰ ਤੇ ਇੰਨਬਿੰਨ ਓਸੇ ਨਾਮ ਤੋਂ ਲਿਖਿਆ ਗਿਆ ਹੈ, ਪਰ ਪਲੈਂਕ ਦਾ ਹਵਾਲਾ ਨਹੀਂ ਦਿੰਦਾ । ਇਹ ਸੋਰਸ ਸਟੇਟਮੈਂਟ ਨੂੰ ਐਨਟ੍ਰੌਪੀ ਦੇ ਵਧਣ ਦਾ ਸਿਧਾਂਤ ਸੱਦਦਾ ਹੈ।
  28. Uhlenbeck, G.E., Ford, G.W. (1963), p. 16.
  29. Carathéodory, C. (1909).
  30. Buchdahl, H.A. (1966), p. 68.
  31. ਫਰਮਾ:Cite book
  32. 32.0 32.1 Planck, M. (1926).
  33. Buchdahl, H.A. (1966), p. 69.
  34. Uffink, J. (2003), pp. 129–132.
  35. Truesdell, C., Muncaster, R.G. (1980). Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Treated as a Branch of Rational Mechanics, Academic Press, New York, ISBN 0-12-701350-4, p. 15.
  36. Planck, M. (1897/1903), p. 81.
  37. Planck, M. (1926), p. 457, Wikipedia editor's translation.
  38. Lieb, E.H., Yngvason, J. (2003), p. 149.
  39. Borgnakke, C., Sonntag., R.E. (2009), p. 304.
  40. ਫਰਮਾ:Cite book
  41. ਫਰਮਾ:Cite journal
  42. Clausius theorem at Wolfram Research
  43. ਫਰਮਾ:Cite journal
  44. ਫਰਮਾ:Cite book
  45. ਫਰਮਾ:Cite journal
  46. Léon Brillouin Science and Information Theory (Academic Press, 1962) (Dover, 2004)
  47. 47.0 47.1 Grandy, W.T. (Jr) (2008), p. 151.
  48. Callen, H.B. (1960/1985), p. 15.
  49. Lieb, E.H., Yngvason, J. (2003), p. 190.
  50. Gyarmati, I. (1967/1970), pp. 4-14.
  51. Glansdorff, P., Prigogine, I. (1971).
  52. Müller, I. (1985).
  53. Müller, I. (2003).
  54. ਫਰਮਾ:Cite book chapter 6
  55. ਫਰਮਾ:Cite book, Chapter 4, p. 143
  56. Schrödinger, E. (1950), p. 192.
  57. ਫਰਮਾ:Cite journal Œuvres VII 262–490 (theorem 1 section 8)
  58. Carathéodory, C. (1919) "Über den Wiederkehrsatz von Poincaré". Berl. Sitzungsber. 580–584; Ges. math. Schr. IV 296–301