ਬਰਾ-ਕੈੱਟ ਧਾਰਨਾ
ਫਰਮਾ:Quantum mechanics ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ, ਬ੍ਰਾ-ਕੈੱਟ ਨੋਟੇਸ਼ਨ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਦਰਸਾਉਣ ਲਈ ਇੱਕ ਮਿਆਰੀ ਚਿੰਨ-ਧਾਰਨਾ ਹੈ ਜੋ ਐਂਗਲ ਬਰੈਕਟਾਂ ਅਤੇ ਖੜਵੇਂ ਬਾਰਾਂ ਨਾਲ ਬਣੀਆਂ ਹੁੰਦੀਆਂ ਹਨ। ਗਣਿਤ ਵਿੱਚ ਇਹਨਾਂ ਦੀ ਵਰਤੋਂ ਸੰਖੇਪ ਵੈਕਟਰ ਅਤੇ ਰੇਖਿਕ ਫੰਕਸ਼ਨਲਾਂ ਨੂੰ ਲਿਖਣ ਲਈ ਵੀ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਰਕਮਾਂ ਵਿੱਚ, ਕਿਸੇ ਕੰਪਲੈਕਸ ਵੈਕਟਰ ਸਪੇਸ ਅੰਦਰ ਕਿਸੇ ਵੈਕਟਰ ਉੱਤੇ ਕੋਈ ਰੇਖਿਕ ਫੰਕਸ਼ਨਲ ਦਾ ਐਕਸ਼ਨ ਜਾਂ ਸਕੇਲਰ ਗੁਣਨਫਲ, ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ
- ,
ਜਿਸਦਾ ਖੱਬਾ ਪਾਸਾ ਇਹ ਹੁੰਦਾ ਹੈ,
ਜਿਸਨੂੰ ਬ੍ਰਾ' ਫਰਮਾ:IPAc-en, ਕਹਿੰਦੇ ਹਨ ਅਤੇ ਇੱਕ ਸੱਜਾ ਪਾਸਾ ਇਹ ਹੁੰਦਾ ਹੈ,
- ,
ਜਿਸਨੂੰ ਕੈੱਟ ਫਰਮਾ:IPAc-en ਕਿਹਾ ਜਾਂਦਾ ਹੈ।
ਚਿੰਨ-ਧਾਰਨਾ 1939 ਵਿੱਚ ਪੌਲ ਡੀਰਾਕ ਦੁਆਰਾ ਪੇਸ਼ ਕੀਤੀ ਗਈ ਸੀ[1][2] ਅਤੇ ਇਸਨੂੰ ਡੀਰਾਕ ਨੋਟੇਸ਼ਨ ਦੇ ਨਾਮ ਨਾਲ ਵੀ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਬੇਸ਼ੱਕ ਇਸ ਨੋਟੇਸ਼ਨ ਨੂੰ ਗ੍ਰਾਸਮਾੱਨ ਦੀੲਸ ਨੋਟੇਸ਼ਨ ਵਿੱਚ ਵੀ ਪਹਿਲਾਂ ਵਰਤਿਆ ਗਿਆ ਸੀ,
ਜੋ ਲਗਭਗ 100 ਸਾਲ ਪਹਿਲਾਂ ਉਸਦੇ ਇਨਰ ਗੁਣਨਫਲ ਵਿੱਚ ਵਰਤਿਆ ਗਿਆ ਸੀ।[3] ਰਲਦੀ ਮਿਲਦੀ ਮਾਤਰਾ ਦਰਅਸਲ ਇਹ ਹੈ
ਅਤੇ ਬੁਨਿਆਦੀ ਬੌਰਨ ਰੂਲ ਮੁਤਾਬਿਕ ਵਿਆਖਿਆਬੱਧ ਕੀਤਾ ਜਾਂਦਾ ਹੈ।
ਵੈਕਟਰ ਸਪੇਸਾਂ
ਪਿਛੋਕੜ: ਵੈਕਟਰ ਸਪੇਸਾਂ
ਵੈਕਟਰ ਲਈ ਕੈੱਟ ਚਿੰਨ੍ਹ
ਅੰਦਰੂਨੀ ਗੁਣਨਫਲ ਅਤੇ ਬਰਾਜ਼ (ਬਹੁਵਚਨ)
ਰੋਅ (ਪੰਕਤੀ) ਅਤੇ ਕਾਲਮ (ਕਤਾਰ) ਵੈਕਟਰਾਂ ਦੇ ਤੌਰ 'ਤੇ ਬਰਾਜ਼ ਅਤੇ ਕੈੱਟਸ (ਬਹੁਵਚਨ)
ਕੈੱਟਾਂ ਉੱਤੇ ਰੇਖਿਕ ਪਰਿਵਰਤਨ ਦੇ ਤੌਰ 'ਤੇ ਬਰਾਜ਼
ਗੈਰ-ਨੌਰਮਲ ਹੋਣ ਯੋਗ ਅਵਸਥਾਵਾਂ ਅਤੇ ਗੈਰ-ਹਿਲਬਰਟ ਸਪੇਸਾਂ
ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਵਿੱਚ ਵਰਤੋਂਆਂ
ਸਪਿੱਨ-ਹੀਣ ਪੁਜੀਸ਼ਨ-ਸਪੇਸ ਵੇਵ ਫੰਕਸ਼ਨ
ਅਵਸਥਾਵਾਂ ਦਾ ਓਵਰਲੈਪ
ਕਿਸੇ ਸਪਿੱਨ-½ ਕਣ ਲਈ ਅਧਾਰ ਤਬਦੀਲੀ ਕਰਨਾ
ਗਲਤਵਹਿਮੀ ਪੈਦਾ ਕਰਨ ਵਾਲੀਆਂ ਵਰਤੋਆਂ
ਲੀਨੀਅਰ ਓਪਰੇਟਰ
ਕੈੱਟਾਂ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰਦੇ ਰੇਖਿਕ ਓਪਰੇਟਰ
ਬਰਾਜ਼ ਉੱਤੇ ਕ੍ਰਿਆ ਕਰਦੇ ਰੇਖਿਕ ਓਪਰੇਟਰ
ਆਊਟਰ ਪ੍ਰੋਡਕਟ
ਹਰਮਿਸ਼ਨ ਕੰਜੂਗੇਟ ਓਪਰੇਟਰ
ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ
ਰੇਖਿਕਤਾ (ਲੀਨੀਅਰਟੀ)
ਸਹੋਯੋਗਿਕਤਾ (ਐਸੋਸੀਏਟੀਵਿਟੀ)
ਹਰਮਿਸ਼ਨ ਕੰਜਗਸ਼ਨ
ਸੰਯੁਕਤ ਬਰਾਜ਼ ਅਤੇ ਕੈੱਟਸ
ਯੂਨਿਟ ਓਪਰੇਟਰ
ਗਣਿਤ ਸ਼ਾਸਤਰੀਆਂ ਦੁਆਰਾ ਵਰਤੀ ਜਾਣ ਵਾਲੀ ਚਿੰਨ-ਧਾਰਨਾ
ਇਹ ਵੀ ਦੇਖੋ
ਨੋਟਸ
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
- Richard Fitzpatrick, "Quantum Mechanics: A graduate level course", The University of Texas at Austin. Includes:
- 1. Ket space
- 2. Bra space
- 3. Operators
- 4. The outer product
- 5. Eigenvalues and eigenvectors
- Robert Littlejohn, Lecture notes on "The Mathematical Formalism of Quantum mechanics", including bra-ket notation. ਫਰਮਾ:Webarchive Unviversity of California, Berkeley.
- ਫਰਮਾ:Cite journal
ਫਰਮਾ:Quantum mechanics topics [[Category:[ਪੌਲ ਡੀਰਾਕ]]