ਵਿੱਕ ਰੋਟੇਸ਼ਨ
ਫਰਮਾ:Multiple issues ਭੌਤਿਕ ਵਿਗਿਆਨ ਅੰਦਰ, ਵਿੱਕ ਰੋਟੇਸ਼ਨ, ਜਿਸਦਾ ਨਾਮ ਇਟਾਲੀਅਨ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਜੀਅਨ ਕਾਰਲੋ ਵਿੱਕ ਦੇ ਨਾਮ ਤੋਂ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਇੱਕ ਵਾਸਤਵਿਕ-ਨੰਬਰ ਵੇਰੀਏਬਲ ਦੀ ਜਗਹ ਇੱਕ ਕਾਲਪਨਿਕ-ਨੰਬਰ ਵੇਰੀਏਬਲ ਵਰਤ ਕੇ ਕੀਤੀ ਜਾਣ ਵਾਲੀ ਤਬਦੀਲੀ ਦੇ ਤਰੀਕੇ ਨਾਲ ਯੁਕਿਲਡਨ ਸਪੇਸ ਅੰਦਰ ਕਿਸੇ ਸਬੰਧਤ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਕਿਸੇ ਹੱਲ ਤੋਂ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਅੰਦਰ ਇੱਕ ਗਣਿਤਿਕ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਇੱਕ ਹੱਲ ਖੋਜਣ ਦੀ ਇੱਕ ਵਿਧੀ ਹੈ। ਇਹ ਤਬਦੀਲੀ (ਰੂਪਾਂਤਰਨ) ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਅਤੇ ਹੋਰ ਖੇਤਰਾਂ ਵਿੱਚ ਸਮੱਸਿਆਵਾਂ ਪ੍ਰਤਿ ਹੱਲ ਖੋਜਣ ਲਈ ਵੀ ਵਰਤੀ ਜਾਂਦੀ ਹੈ।
ਸਾਰਾਂਸ਼
ਵਿੱਕ ਰੋਟੇਸ਼ਨ ਇਸ ਨਿਰੀਖਣ ਤੋਂ ਪ੍ਰੇਰਿਤ ਹੁੰਦੀ ਹੈ ਕਿ ਮਿੰਕੋਵਸਕੀ ਮੈਟ੍ਰਿਕ (ਮੈਟ੍ਰਿਕ ਟੈਂਸਰ ਵਾਸਤੇ ਫਰਮਾ:Math ਵਾਲੀ ਪ੍ਰੰਪਰਾ ਵਾਲੀਆਂ) ਕੁਦਰਤੀ ਇਕਾਈਆਂ ਵਿੱਚ ਹੁੰਦਾ ਹੈ,
ਅਤੇ ਚਾਰ-ਅਯਾਮੀ ਯੁਕਿਲਡਨ ਮੈਟ੍ਰਿਕ
ਇੱਕ-ਸਮਾਨ ਹੁੰਦੇ ਹਨ ਜੇਕਰ, ਕੋ-ਆਰਡੀਨੇਟ ਫਰਮਾ:Mvar ਨੂੰ ਕਾਲਪਨਿਕ ਮੁੱਲ ਲ਼ੈਣ ਦੀ ਪ੍ਰਵਾਨਗੀ ਹੋਵੇ।
ਮਿੰਕੋਵਸਕੀ ਮੈਟ੍ਰਿਕ, ਯੁਕਿਲਡਨ ਬਣ ਜਾਂਦਾ ਹੈ ਜਦੋਂ ਫਰਮਾ:Mvar ਨੂੰ ਕਾਲਪਨਿਕ ਧੁਰੇ ਤੱਕ ਸੀਮਤ ਰੱਖਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਇਸੇ ਤਰਾਂ ਇਸ ਤੋਂ ਉਲਟ ਵੀ। ਫਰਮਾ:Mvar ਕੋ-ਆਰਡੀਨੇਟਾਂ ਵਾਲੀ ਮਿੰਕੋਵਸਕੀ ਸਪੇਸ ਵਿੱਚ ਦਰਸਾਈ ਕਿਸੇ ਸਮੱਸਿਆ ਨੂੰ ਲੈ ਕੇ ਇਸਨੂੰ ਫਰਮਾ:Math ਵਿੱਚ ਬਦਲ ਕੇ ਵਰਤਦੇ ਹੋਏ, ਕਦੇ ਕਦੇ, ਅਸਾਨੀ ਨਾਲ ਹੱਲ ਹੋਣ ਵਾਲੀ ਵਾਸਤਵਿਕ ਯੁਕਿਲਡਨ ਨਿਰਦੇਸ਼ਾਂਕਾਂ ਫਰਮਾ:Mvar ਵਿੱਚ ਇੱਕ ਸਮੱਸਿਆ ਬਣ ਜਾਂਦੀ ਹੈ ਜੋ ਇਸ ਤੋਂ ਅਸਾਨ ਹੁੰਦੀ ਹੈ। ਇਸ ਹੱਲ ਫੇਰ, ਉਲਟ ਬਦਲ ਅਧੀਨ, ਮੂਲ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਇੱਕ ਹੱਲ ਪੈਦਾ ਕਰਦਾ ਹੈ।
ਆਂਕੜਾਤਮਿਕ ਅਤੇ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ
ਵਿੱਕ ਰੋਟੇਸ਼ਨ ਕਾਲਪਨਿਕ ਟਾਈਮ ਨਾਲ ਉਲਟ ਤਾਪਮਾਨ ਨੂੰ ਬਦਲ ਕੇ ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਨੂੰ ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਨਾਲ ਜੋੜਦੀ ਹੈ। ਤਾਪਮਾਨ ਫਰਮਾ:Mvar ਉੱਤੇ ਹਾਰਮੋਨਿਕ ਔਸੀਲੇਟਰਾਂ ਦੇ ਇੱਕ ਵੱਡੇ ਸੰਗ੍ਰਹਿ ਤੇ ਵਿਚਾਰ ਕਰੋ। ਊਰਜਾ ਫਰਮਾ:Mvar ਵਾਲੇ ਕਿਸੇ ਦਿੱਤੇ ਹੋਏ ਔਸੀਲੇਟਰ ਨੂੰ ਖੋਜਣ ਦੀ ਤੁਲਨਾਤਿਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਹੁੰਦੀ ਹੈ, ਜਿੱਥੇ ਫਰਮਾ:Mvar ਬੋਲਟਜ਼ਮਨ ਦਾ ਸਥਿਰਾਂਕ ਹੈ। ਕਿਸੇ ਨਿਰੀਖਣਯੋਗ ਫਰਮਾ:Mvar ਦਾ ਔਸਤ ਮੁੱਲ, ਕਿਸੇ ਨੌਰਮਲ ਕਰਨ ਵਾਲੇ ਸਥਿਰਾਂਕ ਤੱਕ ਇਹ ਹੁੰਦਾ ਹੈ,
ਜਿੱਥੇ ਫਰਮਾ:Mvar ਸਾਰੀਆਂ ਅਵਸਥਾਵਾਂ ਉੱਪਰ ਜਾਂਦਾ ਹੈ, ਫਰਮਾ:Mvarth ਅਵਸਥਾ ਅੰਦਰ ਫਰਮਾ:Mvar ਦਾ ਮੁੱਲ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਫਰਮਾ:Mvarth ਅਵਸਥਾ ਦੀ ਊਰਜਾ ਹੁੰਦੀ ਹੈ। ਹੁਣ ਅਧਾਰ ਅਵਸਥਾਵਾਂ ਦੀ ਇੱਕ ਸੁਪਰਪੁਜੀਸ਼ਨ ਅੰਦਰ ਕਿਸੇ ਸਿੰਗਲ ਕੁਆਂਟਮ ਹਾਰਮੋਨਿਕ ਔਸੀਲੇਟਰ ਨੂੰ ਲਓ, ਜੋ ਇੱਕ ਹੈਮਿਲਟੋਨੀਅਨ ਫਰਮਾ:Mvar ਅਧੀਨ ਇੱਕ ਟਾਈਮ ਫਰਮਾ:Mvar ਲਈ ਉਤਪੰਨ ਹੋ ਰਿਹਾ ਹੋਵੇ। ਊਰਜਾ ਫਰਮਾ:Mvar ਵਾਲੀ ਅਧਾਰ ਅਵਸਥਾ ਦੀ ਤੁਲਨਾਤਮਿਕ ਫੇਜ਼ ਤਬਦੀਲੀ ਹੁੰਦੀ ਹੈ, ਘਟਾਇਆ ਹੋਇਆ ਪਲੈਂਕ ਦਾ ਸਥਿਰਾਂਕ ਹੈ।
ਅਵਸਥਾਵਾਂ ਦੀ ਇੱਕ ਇੱਕਸਾਰ (ਸਮਾਨ ਤੌਰ ਤੇ ਕੇਂਦ੍ਰਿਤ) ਸੁਪਰਪੁਜੀਸ਼ਨ ਨੂੰ ਇੱਕ ਮਨਚਾਹੀ ਸੁਪਰਪੁਜੀਸ਼ਨ,
ਤੱਕ ਉਤਪੰਨ ਹੋਣ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਨੌਰਮਲ ਕਰਨ ਵਾਲੇ ਸਥਿਰਾਂਕ ਤੱਕ, ਇਹ ਹੁੰਦਾ ਹੈ,
ਸਟੈਟਿਕਸ ਅਤੇ ਡਾਇਨੈਮਿਕਸ
ਇਹ ਵੀ ਦੇਖੋ
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
- A Spring in Imaginary Time — a worksheet in Lagrangian mechanics illustrating how replacing length by imaginary time turns the parabola of a hanging spring into the inverted parabola of a thrown particle
- Euclidean Gravity — a short note by Ray Streater on the "Euclidean Gravity" programme.