ਸਮਦੋਬਾਹੂ ਤਿਕੋਣ
ਫਰਮਾ:Infobox Polygon ਸਮਦੋਬਾਹੂ ਤਿਕੋਣ ਉਸ ਤਿਕੋਣ ਨੂੰ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੀਆਂ ਦੋ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਬਰਾਬਰ ਹੋਣ।ਸਾਰੀਆਂ ਸਮਬਾਹੂ ਤਿਕੋਨ ਸਮਦੋਬਾਹੂ ਹੋ ਸਕਦੀਆਂ ਹਨ ਪਰ ਉਲਟ ਨਹੀਂ।
ਸਮਦੋਭੁਜੀ ਤਿਕੋਣ ਦੇ ਸ਼ਿਖਰ ਬਿੰਦੂ ਤੋਂ ਲੰਬ, ਸ਼ਿਖਰ ਕੋਣ ਦਾ ਦੁਭਾਜਕ, ਮੱਧਕਾ ਅਤੇ ਸ਼ਿਖਰ ਕੋਣ ਦੇ ਸਾਹਮਣੀ ਭੁਜਾ ਦਾ ਲੰਬ ਦੁਭਾਜਕ ਇੱਕ ਹੀ ਬਿੰਦੂ ਤੇ ਮਿਲਦੇ ਹਨ।
ਜੇ ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਅਧਾਰ ਦੀ ਲੰਬਾਈ ਹੋਵੇ ਤਾਂ ਤਿਕੋਣ ਦੀ ਲੰਬਾਈ ਦਾ ਸੂਤਰ
ਖੇਤਰਫਲ
ਜੇ ਤਿਕੋਣ ਦੇ ਖੇਤਰਫਲ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੋਵੇ ਤਾਂ ਇਸ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸੂਤਰ ਨਾਲ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਜੇ ਤਿਕੋਣ ਦਾ ਸ਼ਿਖਰ ਕੋਣ ਅਤੇ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਹੋਵੇ ਤਾਂ ਖੇਤਰਫਲ ਨੂੰ ਹੇਠ ਲਿਖੇ ਸੂਤਰ ਨਾਲ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਘੇਰਾ
ਤਿਕੋਣ ਦੇ ਘੇਰੇ ਨੂੰ ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਅਤੇ ਅਧਾਰ ਨਾਲ ਪਤਾ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
ਸਮਦੋਭੁਜੀ ਤਿਕੋਣ ਦੇ ਖੇਤਰਫਲ ਅਤੇ ਘੇਰਾ ਦਾ ਸਬੰਧ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ।
ਸਮਦੋਭੁਜੀ ਤਿਕੋਣ ਦੇ ਖੇਤਰਫਲ, ਘੇਰੇ ਅਤੇ ਜੋ ਭੁਜਾ ਬਰਾਬਰ ਨਹੀਂ ਹੈ ਉਸ ਦਾ ਸਬੰਧ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਹੁੰਦਾ ਹੈ।
ਕੋਣ ਦੁਭਾਜਕ
ਜੇ ਬਰਾਬਰ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ ਅਤੇ ਦੂਜੀ ਭੁਜਾ ਜਾਂ ਅਧਾਰ ਹੋਵੇ ਤਾਂ ਅੰਦਰੂਨੀ ਕੋਣ ਦਾ ਦੁਭਾਜਕ ਹੈ ਤਾਂ
ਅਤੇ
ਅਰਧ ਵਿਆਸ

ਅੰਦਰੂਨੀ ਚੱਕਰ ਦਾ ਅਰਧ ਵਿਆਸ ਅਤੇ ਬਾਹਰੀ ਚੱਕਰ ਦਾ ਅਰਧ ਵਿਆਸ ਦਾ ਸੂਤਰ ਨੂੰ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜੇ ਸਮਦੋਭੁਜ ਤਿਕੋਣ ਦੀ ਭੁਜਾਵਾਂ ਦੀ ਲੰਬਾਈ , ਅਧਾਰ , ਅਤੇ ਉਚਾਈ ਹੈ ਤਾਂ
ਇਸ ਦਾ ਕੇਂਦਰ ਤਿਕੋਣ ਦੀ ਸਮਾਨਤਾ ਧੁਰੇ ਦੇ ਹੋਵੇਗਾ।
ਬਾਹਰੀ ਚੱਕਰ ਦਾ ਅਰਧ ਵਿਆਸ
ਅੰਦਰੂਨੀ ਵਰਗ
ਜੇ ਤਿਕੋਣ ਦਾ ਅਧਾਰ ਉਚਾਈ ਤਾਂ ਅੰਦਰੂਨੀ ਵਰਗ ਦੀ ਭੁਜਾ ਦੀ ਲੰਬਾਈ: