ਸਮਰੂਪਤਾ (ਰੇਖਾਗਣਿਤ)

testwiki ਤੋਂ
ਨੈਵੀਗੇਸ਼ਨ 'ਤੇ ਜਾਓ ਸਰਚ ਤੇ ਜਾਓ

ਸਮਰੂਪ ਦੋ ਵਸਤੂਆਂ ਇਕੋ ਹੀ ਸ਼ਕਲ, ਅਕਾਰ ਦੀਆਂ ਹੋਣ ਉਸ ਨੂੰ ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਇੱਕ ਵਸਤੂ ਨੂੰ ਦੂਜੀ ਤੋਂ ਉਸ ਦੀਆਂ ਭੁਜਾਵਾਂ ਨੂੰ ਅਨੁਪਾਤਿਕ ਵਧਾਕੇ ਜਾਂ ਘਟਾਕੇ ਬਣਾਇਆ ਜਾ ਸਕਦਾ ਹੈ। ਜਿਵੇਂ ਸਾਰੇ ਚੱਕਰ ਇੱਕ ਦੂਜੇ ਨੂੰ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ। ਸਾਰੀਆਂ ਸਮਬਾਹੂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ। ਪਰ ਆਇਤ, ਸਮਦੋਭੁਜੀ ਤ੍ਰਿਭੁਜ ਅਤੇ ਅੰਡਾਕਾਰ ਸਮਰੂਪ ਨਹੀਂ ਹੁੰਦੇ। ਜੇ ਕਿਸੇ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੀ ਮਾਤਰਾ ਦੁਜੀ ਤ੍ਰਿਭੁਜ ਦੇ ਦੋ ਕੋਣਾਂ ਦੇ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੀਆਂ ਹਨ ਇਸ ਨਿਯਮ ਨੂੰ AAA ਸਮਰੂਪ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦੋ ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ABC ਅਤੇ ABC ਵਿੱਚ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਅਨੁਪਾਤ ਸਮਾਨ ਹੁੰਦੇ ਹਨ। ਸਮਰੂਪ ਤ੍ਰਿਭੁਜਾਂ ਦੇ ਖੇਤਰਫਲਾਂ ਦਾ ਅਨੁਪਾਤ ਉਹਨਾਂ ਦੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਦੇ ਵਰਗ ਦੇ ਅਨੁਪਾਤ ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।[1]

ਨਿਯਮ

ਜੇ BAC ਅਤੇ BAC ਕੋਣਾਂ ਦਾ ਮਾਪ ਅਤੇ ABC ਅਤੇ ABC ਦਾ ਮਾਪ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤੀਜਾ ਕੋਣ ACB ਅਤੇACB ਬਰਾਬਰ ਹੀ ਹੁੰਦੇ ਹਨ ਤਾਂ ਦੋਨੋਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ।
ABCABC.

ਤ੍ਰਿਭੁਜ ਦੀਆਂ ਸਾਰੀਆਂ ਸੰਗਤ ਭੁਜਾਵਾਂ ਇਕੋ ਹੀ ਅਨੁਪਾਤ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ।

ABAB=BCBC=ACAC. ਤਾਂ ਤ੍ਰਿਭੁਜਾ ਸਮਰੂਪ ਹਨ।

ਜੇ ਤ੍ਰਿਭੁਜਾਂ ਦੀਆਂ ਦੋ ਭੁਜਾਵਾਂ ਇਕੋ ਹੀ ਅਨੁਪਾਤ ਵਿੱਚ ਹੋਣ ਅਤੇ ਉਹਨਾਂ ਵਿਚਕਾਰਲਾ ਕੋਣ ਬਰਾਬਰ ਹੋਵੇ ਤਾਂ ਤ੍ਰਿਭੁਜ ਸਮਰੂਪ ਹੁੰਦੇ ਹਨ।

ABAB=BCBC ਅਤੇ ABC ਅਤੇ ABC ਬਰਾਬਰ ਹਨ।

ਜਦੋ ਦੋ ਤ੍ਰਿਭੁਜ ABC ਅਤੇ ABC ਸਮਰੂਪ ਹੋਣ ਤਾਂ ਉਹਨਾਂ ਨੂੰ ਹੇਠ ਲਿਖੇ ਅਨੁਸਾਰ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ।

ABCABC.

ਹਵਾਲੇ

ਫਰਮਾ:ਹਵਾਲੇ