ਓਹਮ ਦਾ ਨਿਯਮ

ਓਹਮ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਇੱਕ ਬਿਜਲਈ ਚਾਲਕ (ਕੰਡਕਟਰ) ਦੇ ਵਿੱਚ ਲੰਘਣ ਵਾਲੇ ਕਰੰਟ ਕਿਸੇ ਦੋ ਬਿੰਦੂਆਂ ਵਿਚਕਾਰ ਲਗਾਈ ਗਈ ਵੋਲਟੇਜ ਦਾ ਸਿੱਧਾ ਅਨੁਪਾਤੀ (directly proportional) ਹੁੰਦਾ ਹੈ। ਸਥਾਈ ਪੈਰਾਮੀਟਰ ਰਜ਼ਿਸਟੈਂਸ ਨੂੰ ਅਨੁੁਪਾਤਤਾ (constant of Proportionality) ਦੀ ਥਾਂ ਤੇ ਰੱਖਣ ਨਾਲ ਇਸ ਨਿਯਮ ਨੂੰ ਇਸ ਤਰ੍ਹਾਂ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ,[1][2]
ਜਿੱਥੇ ਫਰਮਾ:Math ਐਂਪੀਅਰਾਂ ਵਿੱਚ, ਕਿਸੇ ਚਾਲਕ ਵਿੱਚੋਂ ਲੰਘ ਰਿਹਾ ਕਰੰਟ ਹੈ, V ਚਾਲਕ ਦੇ ਦੋਵਾਂ ਪਾਸੇ ਲਗਾਈ ਜਾਣ ਵੋਲਟੇਜ ਹੈ, ਜਿਸਨੂੰ ਵੋਲਟਾਂ ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਅਤੇ R, ਜਿਸਨੂੰ ਓਹਮਾਂ ਵਿੱਚ ਮਾਪਿਆ ਜਾਂਦਾ ਹੈ, ਚਾਲਕ ਦੀ ਰਜ਼ਿਸਟੈਂਸ ਜਾਂ ਅਵਰੋਧਤਾ ਹੈ। ਹੋਰ ਖ਼ਾਸ ਤੌਰ 'ਤੇ, ਓਹਮ ਦਾ ਨਿਯਮ ਕਹਿੰਦਾ ਹੈ ਕਿ ਇਸ ਸਬੰਧ ਵਿੱਚ R ਇੱਕ ਸਥਾਈ ਪੈਰਾਮੀਟਰ ਹੈ ਅਤੇ ਇਹ ਕਰੰਟ ਉੱਪਰ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦਾ।[3]
ਇਸ ਨਿਯਮ ਦਾ ਨਾਮ ਜਰਮਨ ਦੇ ਭੌਤਿਕ ਵਿਗਿਆਨੀ ਜੌਰਜ ਓਹਮ ਦੇ ਨਾਮ ਉੱਪਰ ਰੱਖਿਆ ਗਿਆ ਹੈ, ਜਿਸਨੇ 1827 ਵਿੱਚ ਇੱਕ ਲੇਖ ਵਿੱਚ, ਸਧਾਰਨ ਬਿਜਲਈ ਸਰਕਟਾਂ ਵਿੱਚ ਲਗਾਈ ਗਈ ਵੋਲਟੇਜ ਅਤੇ ਕਰੰਟ ਦੇ ਮਾਪ, ਵੱਖ-ਵੱਖ ਲੰਬਾਈ ਵਾਲੀਆਂ ਤਾਰਾਂ, ਨਾਲ ਦੱਸੇ। ਓਹਮ ਨੇ ਆਪਣੇ ਖੋਜ ਨਤੀਜੇ ਅੱਜਕੱਲ੍ਹ ਦੀ ਉਪਰੋਕਤ ਸਮੀਕਰਨ ਤੋਂ ਥੋੜ੍ਹੇ ਵਧੇਰੇ ਜਟਿਲ ਸਮੀਕਰਨਾਂ ਨਾਲ ਦਰਸਾਏ ਸਨ।
ਭੌਤਕ ਵਿਗਿਆਨ ਵਿੱਚ, ਓਹਮ ਦਾ ਨਿਯਮ ਵੱਖੋ-ਵੱਖ ਪੈਮਾਨਿਆਂ ਦੇ ਸਧਾਰਨੀਕਰਨ ਲਈ ਬਹੁਤ ਥਾਵਾਂ ਤੇ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਜਿਵੇਂ ਕਿ
ਜਿੱਥੇ J ਕਿਸੇ ਅਵਰੋਧੀ(resistive) ਵਸਤੂ ਦੀ ਦਿੱਤੀ ਹੋਈ ਜਗ੍ਹਾ ਤੇ ਕਰੰਟ ਘਣਤਾ ਹੈ, E ਉਸ ਜਗ੍ਹਾ ਤੇ ਇਲੈੱਕਟ੍ਰਿਕ ਫ਼ੀਲਡ ਹੈ, ਅਤੇ σ (ਸਿਗਮਾ) ਬਿਜਲਈ ਚਾਲਕਤਾ ਹੈ, ਜਿਹੜੀ ਕਿ ਵਸਤੂ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਓਹਮ ਦੇ ਨਿਯਮ ਦਾ ਇਹ ਰੂਪ ਗੁਸਤਾਵ ਕਿਰਚਫ਼ ਦੇ ਕਾਰਨ ਹੋ ਸਕਿਆ ਸੀ।[4]
ਸਰਕਟ ਵਿਸ਼ਲੇਸ਼ਣ


ਸਰਕਟ ਵਿਸ਼ਲੇਸ਼ਣ (circuit analysis) ਵਿੱਚ, ਓਹਮ ਦੇ ਨਿਯਮ ਦੇ ਤਿੰਨ ਬਰਾਬਰ ਸਮੀਕਰਨ ਇਸ ਤਰ੍ਹਾਂ ਵਰਤੇ ਜਾ ਸਕਦੇ ਹਨ:
ਹਰੇਕ ਸਮੀਕਰਨ ਵਿੱਚ ਦਿੱਤੇ ਹੋਏ ਚਿੰਨ੍ਹ, ਓਹਮ ਦੇ ਨਿਯਮ ਦੀ ਉਪਰੋਕਤ ਦਿੱਤੀ ਹੋਈ ਪਰਿਭਾਸ਼ਾ ਵਾਲੇ ਹੀ ਹਨ ਅਤੇ ਇਹ ਫ਼ਾਰਮੂਲੇ ਪਰਿਭਾਸ਼ਾ ਹੇਠ ਦਿੱਤੀ ਹੋਈ ਸਮੀਕਰਨ ਤੋਂ ਹੀ ਬਣਾਏ ਗਏ ਸਨ।[2][5][6][7][8][9][10]
ਇਸ ਸਮੀਕਰਨ ਦੇ ਹੋਰ ਰੂਪਾਂ ਨੂੰ ਇੱਕ ਤਿਕੋਣ ਨਾਲ ਵੀ ਦਰਸਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿੱਥੇ V (ਵੋਲਟੇਜ) ਨੂੰ ਉੱਪਰਲੇ ਹਿੱਸੇ ਵਿੱਚ ਰੱਖਿਆ ਗਿਆ ਹੈ, I (ਕਰੰਟ) ਨੂੰ ਖੱਬੇ ਪਾਸੇ ਰੱਖਿਆ ਗਿਆ ਹੈ ਅਤੇ R (ਰਜ਼ਿਸਟੈਂਸ) ਨੂੰ ਸੱਜੇ ਪਾਸੇ ਰੱਖਿਆ ਗਿਆ ਹੈ। ਰੇਖਾ ਜਿਹੜੀ ਕਿ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਹਿੱਸੇ ਨੂੰ ਵੱਖ ਕਰਦੀ ਹੈ, ਗੁਣਾ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ ਅਤੇ ਉੱਪਰ ਅਤੇ ਹੇਠਲੇ ਹਿੱਸਿਆਂ ਨੂੰ ਵੱਖ ਕਰਨ ਵਾਲੀ ਰੇਖਾ ਭਾਗ ਨੂੰ ਦਰਸਾਉਂਦੀ ਹੈ।
ਅਵਰੋਧੀ ਸਰਕਟ (Resistive circuits)
ਰਜ਼ਿਸਟਰ ਸਰਕਟ ਵਿਚਲੇ ਉਹ ਤੱਤ ਹੁੰਦੇ ਹਨ ਜਿਹੜੇ ਕਿ ਓਹਮ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਲੰਘਣ ਵਾਲੇ ਕਰੰਟ ਦਾ ਪ੍ਰਤਿਰੋਧ ਕਰਦੇ ਹਨ। ਇਹ ਕਿਸੇ ਖ਼ਾਸ ਅਵਰੋਧੀ ਮਾਤਰਾ (resistance value) R ਨੂੰ ਧਿਆਨ ਵਿੱਚ ਰੱਖ ਕੇ ਬਣਾਏ ਜਾਂਦੇ ਹਨ। ਕਿਸੇ ਸਰਕਟ ਦੇ ਯੋਜਨਾਬੱਧ ਚਿੱਤਰ ਵਿੱਚ ਰਜ਼ਿਸਟਰ ਨੂੰ ਉੱਪਰ-ਹੇਠਾਂ (zig-zag) ਰੇਖਾ ਵਾਲੇ ਚਿੰਨ੍ਹ ਨਾਲ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੈ। ਤੱਤ (ਰਜ਼ਿਸਟਰ ਜਾਂ ਚਾਲਕ) ਜਿਹੜੇ ਓਹਮ ਦੇ ਨਿਯਮ ਦੇ ਅਨੁਸਾਰ ਚਲਦੇ ਹਨ, ਉਹਨਾਂ ਨੂੰ ਓਹਮਿਕ ਯੰਤਰ (ਜਾਂ ਓਹਮਿਕ ਰਜ਼ਿਸਟਰ) ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਕਿਉਂਕਿ ਉਸ ਸਰਕਟ ਵਿੱਚ ਅਸੀਂ ਕੁੱਲ ਰਜ਼ਿਸਟੈਂਸ ਜਾਂ ਅਵਰੋਧਤਾ ਦਾ ਇੱਕ ਨਿਸ਼ਚਿਤ ਮੁੱਲ ਦੱਸ ਸਕਦੇ ਹਾਂ।
ਓਹਮ ਦਾ ਨਿਯਮ ਸਿਰਫ਼ ਅਵਰੋਧੀ ਤੱਤਾਂ (resistive elements) ਵਾਲੇ ਸਰਕਟ (ਜਿਸ ਵਿੱਚ ਕਪੈਸਟੈਂਸ ਜਾਂ ਇੰਡਕਟੈਂਸ ਨਾ ਹੋਵੇ) ਵਿੱਚ ਹੀ ਲਗਾਇਆ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਵਿੱਚ ਕਰੰਟ ਜਾਂ ਵੋਲਟੇਜ ਏ.ਸੀ. ਜਾਂ ਡੀ.ਸੀ. ਹੋਣ ਨਾਲ ਕੋਈ ਫ਼ਰਕ ਨਹੀਂ ਪੈਂਦਾ। ਆਮ ਭਾਸ਼ਾ ਵਿੱਚ ਕਿਸੇ ਵੀ ਦਿੱਤੇ ਹੋਏ ਸਮੇਂ ਦੇ ਪਲ ਵਿੱਚ ਓਹਮ ਦਾ ਨਿਯਮ ਸਿਰਫ਼ ਅਤੇ ਸਿਰਫ਼ ਅਵਰੋਧੀ ਤੱਤਾਂ ਵਾਲੇ ਸਰਕਟ ਲਈ ਹੀ ਠੀਕ ਹੁੰਦਾ ਹੈ।
ਹਵਾਲੇ
ਬਾਹਰੀ ਲਿੰਕ
- Ohm's Law chapter from Lessons In Electric Circuits Vol 1 DC book and series.
- John C. Shedd and Mayo D. Hershey,"The History of Ohm's Law", Popular Science, December 1913, pages 599-614, Bonnier Corporation ਫਰਮਾ:ISSN, gives the history of Ohm's investigations, prior work, Ohm's false equation in the first paper, illustration of Ohm's experimental apparatus.
- Morton L. Schagrin, "Resistance to Ohm's Law", American Journal of Physics, July 1963, Volume 31, Issue 7, pp. 536–47. Explores the conceptual change underlying Ohm's experimental work.
- Kenneth L. Caneva, "Ohm, Georg Simon." Complete Dictionary of Scientific Biography. 2008
- ↑ ਫਰਮਾ:Cite book
- ↑ 2.0 2.1 ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ Olivier Darrigol, Electrodynamics from Ampère to Einstein, p.70, Oxford University Press, 2000 ਫਰਮਾ:ISBN.
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book
- ↑ ਫਰਮਾ:Cite book